微分算子求解微分方程

n阶常系数非齐次线性微分方程:

$$ y ^ { ( n ) } + p _ { 1 } y ^ { ( n - 1 ) } + p _ { 2 } y ^ { ( n - 2 ) } + .... + p _ { n - 1 } y ^ { \prime } + p _ { n } y = f ( x ) \neq 0 $$

记号:

$$\frac { d } { d x } = D , \frac { d ^ { 2 } } { d x ^ { 2 } } = D ^ { 2 } , ...., \frac { d ^ { n } } { d x ^ { n } } = D ^ { n }$$

则:

$$ y ^ { \prime } = \frac { d y } { d x } = D y , y ^ { \prime \prime } = \frac { d ^ { 2 } y } { d x ^ { 2 } } = D ^ { 2 } y , ...., y ^ { ( n ) } = \frac { d ^ { n } y } { d x ^ { n } } = D ^ { n } y$$

则n阶常系数非齐次线性微分方程可转化为:

$$\left( D ^ { n } + p _ { 1 } D ^ { n - 1 } + ...+ p _ { n _ { - 1 } } D + p _ { n } \right) y = f ( x )$$

记:

$$F ( D ) = D ^ { n } + p _ { 1 } D ^ { n - 1 } + ... + p _ { n - 1 } D + p _ { n }.$$

于是

$F ( D ) y = f ( x )$,从而得特解为:$y ^ { * } = \frac { f ( x ) } { F ( D ) } = \frac { 1 } { F ( D ) } f ( x )$

算子多项式性质

$$\begin{array} { l } { \text { (1)F(D) } \left( \alpha f _ { 1 } ( x ) + \beta f _ { 2 } ( x ) \right) = \alpha F ( D ) f _ { 1 } ( x ) + \beta F ( D ) f _ { 2 } ( x ) } \\ { \text { (2) } \left[ F _ { 1 } ( D ) + F _ { 2 } ( D ) \right] f ( x ) = F _ { 1 } ( D ) f ( x ) + F _ { 2 } ( D ) f ( x ) } \\ { ( 3 ) F ( D ) = F _ { 1 } ( D ) F _ { 2 } ( D ) } \\ { F ( D ) f ( x ) = F _ { 1 } ( D ) \left[ F _ { 2 } ( D ) f ( x ) \right] = F _ { 2 } ( D ) \left[ F _ { 1 } ( D ) f ( x ) \right] } \\ { \text { (4) } \left( \sum\limits _ { k = 0 } ^ { n } F _ { n - k } D ^ { k } \right) [ u ( x ) v ( x ) ] = \sum\limits _ { k = 0 } ^ { n } F _ { n - k } \left[ \sum\limits _ { m = 0 } ^ { k } C _ { k } ^ { m } \left( D ^ { m } u ( x ) \right) \left( D ^ { k - m } v ( x ) \right) \right] } \\ { ( 5 ) F \left( D _ { x } \right) f ( a x + b ) = \left. \left[ F \left( a D _ { u } \right) f ( u ) \right] \right| _ { u = a x + b } } \end{array}$$

算子多项式运算公式

$$\begin{array} { l } { \text { (1) } F ( D ) e ^ { k x } = e ^ { k ( x ) } F ( k ) } \\ { \text { (2) } F \left( D ^ { 2 } \right) \sin a x = \sin a x F \left( - a ^ { 2 } \right) } \\ { F \left( D ^ { 2 } \right) \cos a x = \cos a x F \left( - a ^ { 2 } \right) } \\ { \text { (3) } F ( D ) e ^ { k x } v ( x ) = e ^ { k x } F ( D + k ) v ( x ) } \\ { \text { (4) } F ( D ) x v ( x ) = x F ( D ) v ( x ) + F ^ { \prime } ( D ) v ( x ) } \end{array}$$

逆算子多项式性质

$$\begin{array} { l } { \text { (1) } \frac { 1 } { F ( D ) } F ( D ) f ( x ) = f ( x ) } \\ { \text { (2) } \frac { 1 } { F ( D ) } [ \alpha f ( x ) + \beta g ( x ) ] = \alpha \frac { 1 } { F ( D ) } f ( x ) + \beta \frac { 1 } { F ( D ) } g ( x ) } \\ { \text { (3) } F ( D ) = F _ { 1 } ( D ) F _ { 2 } ( D ) } \\ { \frac { 1 } { F ( D ) } f ( x ) = \frac { 1 } { F _ { 1 } ( D ) } \left[ \frac { 1 } { F _ { 2 } ( D ) } f ( x ) \right] = \frac { 1 } { F _ { 2 } ( D ) } \left[ \frac { 1 } { F _ { 1 } ( D ) } f ( x ) \right] } \end{array}$$

逆算子多项式运算公式

$$\begin{array} { l } { \text { (1) } \frac { 1 } { F ( D ) } e ^ { \lambda x } = \frac { e ^ { \lambda x } } { F ( \lambda ) } ( F ( \lambda ) \neq 0 ) } \\ { \text { (2) } \frac { 1 } { F \left( D ^ { 2 } \right) } \sin \omega x = \frac { \sin \omega x } { F \left( - \omega ^ { 2 } \right) } \left( F \left( - \omega ^ { 2 } \right) \neq 0 \right) } \\   { \text { (3) }\frac { 1 } { F \left( D ^ { 2 } \right) } \cos \omega x = \frac { \cos \omega x } { F \left( - \omega ^ { 2 } \right) } \left( F \left( - \omega ^ { 2 } \right) \neq 0 \right) } \end{array}$$

 算子解法及例题

类型一

$f ( x ) = f _ { k } ( x )$

解法:当$F ( 0 ) \neq 0$时$y ^ { * } = \frac { 1 } { F ( D ) } f _ { k } ( x ) = Q _ { k } ( D ) f _ { k } ( x )$

当$F ( 0 ) = 0$时设$\boldsymbol { F } ( \boldsymbol { D } ) = \boldsymbol { D } ^ { r } \overline { \boldsymbol { F } } ( \boldsymbol { D } )$其中$\overline { \boldsymbol { F } } ( 0 ) \neq 0$则

$y ^ { * } = \frac { 1 } { F ( D ) } f _ { k } ( x ) = \frac { 1 } { D ^ { r } } \left[ \frac { 1 } { \overline { F } ( D ) } f _ { k } ( x ) \right] = \frac { 1 } { D ^ { r } } \left[ Q _ { k } ( D ) f _ { k } ( x ) \right]$

例1 $$y ^ { \prime \prime } + 5 y ^ { \prime } + 6 y = x ^ { 2 }$$

解:写成$( D + 2 ) ( D + 3 ) y = x ^ { 2 }$

故对应齐次方程$( D + 2 ) ( D + 3 ) y = 0$通解为$$y _ { 1 } ( x ) = C _ { 1 } e ^ { - 2 x } + C _ { 2 } e ^ { - 3 x }$$

求$y ^ { * } ( x )$

 $$( D + 2 ) ( D + 3 ) y ^ { * } = x ^ { 2 }$$

$$\begin{aligned} y ^ { * } ( x ) & = \frac { 1 } { ( D + 2 ) ( D + 3 ) } x ^ { 2 } \\ & = \left( \frac { 1 } { D + 2 } - \frac { 1 } { D + 3 } \right) x ^ { 2 } \end{aligned}$$

$$\begin{array} { l } { = \frac { 1 } { D + 2 } x ^ { 2 } - \frac { 1 } { D + 3 } x ^ { 2 } } \\ { = \frac { 1 } { 2 } \frac { 1 } { 1 + \frac { D } { 2 } } x ^ { 2 } - \frac { 1 } { 3 } \frac { 1 } { 1 + \frac { D } { 3 } } x ^ { 2 } } \\ { = \frac { 1 } { 2 } \left( 1 - \frac { D } { 2 } + \frac { D ^ { 2 } } { 4 } - \cdots \right) x ^ { 2 } } \\ { \quad - \frac { 1 } { 3 } \left( 1 - \frac { D } { 3 } + \frac { D ^ { 2 } } { 9 } - \cdots \right) x ^ { 2 } } \end{array}$$

$$\begin{array} { l } { = \frac { 1 } { 2 } \left( x ^ { 2 } - \frac { 1 } { 2 } \left( x ^ { 2 } \right) ^ { \prime } + \frac { 1 } { 4 } \left( x ^ { 2 } \right) ^ { \prime \prime } \right) } \\ { \quad - \frac { 1 } { 3 } \left( x ^ { 2 } - \frac { 1 } { 3 } \left( x ^ { 2 } \right) ^ { \prime } + \frac { 1 } { 9 } \left( x ^ { 2 } \right) ^ { \prime \prime } \right) } \\ { = \frac { 1 } { 2 } \left( x ^ { 2 } - x + \frac { 1 } { 2 } \right) - \frac { 1 } { 3 } \left( x ^ { 2 } - \frac { 2 x } { 3 } + \frac { 2 } { 9 } \right) } \\ { = \frac { 1 } { 6 } x ^ { 2 } - \frac { 5 } { 18 } x + \frac { 19 } { 108 } } \end{array}$$

 通解为:$$\begin{array} { l } { y ( x ) = y _ { 1 } ( x ) + y ^ { * } ( x ) } \\ { = C _ { 1 } e ^ { - 2 x } + C _ { 2 } e ^ { - 3 } + \frac { 1 } { 6 } x ^ { 2 } - \frac { 5 } { 18 } x + \frac { 19 } { 108 } } \end{array}$$

类型二:$f ( x ) = e ^ { 2 x } f _ { k } ( x )$

解法:$y ^ { * } = \frac { 1 } { F ( D ) } \left[ e ^ { \lambda x } f _ { k } ( x ) \right] = e ^ { \lambda x } \frac { 1 } { F ( \lambda + D ) } f _ { k } ( x )$

例2:$$\left( D ^ { 2 } - 6 D + 10 \right) y = e ^ { 3 x }$$

$$y ^ { * } = \frac { 1 } { P ( D ) } e ^ { 3 x } = \frac { 1 } { D ^ { 2 } - 6 D + 10 } e ^ { 3 x } = \frac { 1 } { 3 ^ { 2 } - 6 \cdot 3 + 10 } e ^ { 3 x } = e ^ { 3 x }$$

通解为:

$$y = e ^ { 3 x } \left( C _ { 1 } \cos x + C _ { 2 } \sin x + 1 \right)$$

类型三:$$f ( x ) = f _ { k } ( x ) e ^ { \lambda x } \cos \omega x,f ( x ) = f _ { k } ( x ) e ^ { \lambda x } \sin \omega x$$

解法:

考虑方程

$\boldsymbol { F } ( \boldsymbol { D } ) \boldsymbol { y } = \boldsymbol { e } ^ { ( \lambda + i \omega ) x } \boldsymbol { f } _ { k } ( \boldsymbol { x } )$特解的实部和虚部

例3:求

$\left( \boldsymbol { D } ^ { 2 } - 2 \boldsymbol { D } + 5 \right) \boldsymbol { y } = \boldsymbol { x } e ^ { \boldsymbol { x } } \sin 2 \boldsymbol { x }$

解:考虑$\left( D ^ { 2 } - 2 D + 5 \right) y = e ^ { ( 1 + 2 i ) x } x$特解

$$y ^ { * } = \frac { 1 } { \left( D ^ { 2 } - 2 D + 5 \right) } e ^ { ( 1 + 2 i ) x } x$$

$$\begin{array} { l } { = e ^ { ( 1 + 2 i ) x } \frac { 1 } { ( D + 1 + 2 i ) ^ { 2 } - 2 ( D + 1 + 2 i ) + 5 } x } \\ { = e ^ { ( 1 + 2 i ) x } \left( - \frac { x ^ { 2 } } { 8 } i + \frac { x } { 16 } \right) } \\ { = e ^ { x } \left[ \left( \frac { x ^ { 2 } } { 8 } \sin 2 x + \frac { x } { 16 } \cos 2 x \right) + i \left( - \frac { x ^ { 2 } } { 8 } \cos 2 x + \frac { x } { 16 } \sin 2 x \right) \right] } \end{array}$$

 

$$y _ { 1 } ^ { * } = e ^ { x } \left( - \frac { x ^ { 2 } } { 8 } \cos 2 x + \frac { x } { 16 } \sin 2 x \right)$$

转载于:https://www.cnblogs.com/Keyon-16/p/10298163.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值