微分方程算子法(计算特解的利器)

微分方程

需要学会求解的类型

  1. 直接套公式法的一阶非齐次线性微分方程

  2. 特解十分难算的高阶常系数线性微分方程

  3. 可化简的其它类型

基础概念

齐次方程和非齐次方程

a 1 ∗ y ( n ) + a 2 ∗ y ( n − 1 ) + . . . + a n − 1 ∗ y ′ + a n ∗ y = 0 a_1*y^{(n)}+a_2*y^{(n-1)}+...+a_{n-1}*y'+a_n*y= 0 a1y(n)+a2y(n1)+...+an1y+any=0,相当于线性代数里面的 A X = 0 AX=0 AX=0

其中, A n = ( a 1 , a 2 , ⋯ , a n ) A_{n} =(a_{1},a_{2},\cdots,a_{n}) An=(a1,a2an) X = ( y ( n ) , y ( n − 1 ) , ⋯   , y ) T X = (y^{(n)},y^{(n-1)},\cdots,y)^T X=(y(n),y(n1),,y)T

微分方程是解出 X X X,但由于通过 y y y 可以求出对应的 y ′ , y ′ ′ , . . . , y ( n ) y',y'',...,y^{(n)} y,y′′,...,y(n),故解微分方程的目的就是解出 y y y 的表达式

a 1 ∗ y ( n ) + a 2 ∗ y ( n − 1 ) + . . . + a n − 1 ∗ y ′ + a n ∗ y = f 1 ( x ) + f 2 ( x ) + . . . + f m ( x ) a_1*y^{(n)}+a_2*y^{(n-1)}+...+a_{n-1}*y'+a_n*y= f_1(x)+f_2(x)+...+f_m(x) a1y(n)+a2y(n1)+...+an1y+any=f1(x)+f2(x)+...+fm(x) 相当于线性代数里面的 A X = β AX=\beta AX=β,其中 β = g ( x ) = f 1 ( x ) + . . . + f m ( x ) \beta = g(x) =f_1(x)+...+f_m(x) β=g(x)=f1(x)+...+fm(x)

通解、特解、全部解

  • 特解:符合方程等式成立的任意一个解
  • 通解:符合方程等式成立的一组解
  • 全部解:任何一个使方程等式成立的解构成的集合
  • 奇解:在方程的等式变形过程中可能会将 y 放到分母位置上,从而导致丢掉部分解,丢掉的这部分解称为奇解。全部解 = 奇解 + 通解,所以不用纠结求解通解的时候会丢掉解的问题,放心大胆的变换。

线性和非线性

线性方程:例如从小学开始学习的 3 x + 1 = 4 3x+1=4 3x+1=4和线性方程组 { 3 x + 5 y = 1 7 x − 2 y = 2 \begin{cases}3x + 5y &= 1 \\7x - 2y &= 2\end{cases} { 3x+5y7x2y=1=2
非线性方程:高中解的最多的 x 2 + 2 x + 1 = 0 x^2+ 2x + 1 = 0 x2+2x+1=0或解析几何中的熟悉的联立 { x 2 4 + y 2 3 = 1 x − 2 y = 2 \begin{cases}\frac{x^2}{4} + \frac{y^2}{3} &= 1 \\x - 2y &= 2\end{cases} { 4x2+3y2x2y=1=2

线性方程是指待求解的变量的最高幂次 ≤ \leq 1的方程,而非线性方程中待求解变量的最高幂次 > > > 1。

所谓待求解的变量和自己的选择有关,例如 y ′ + x 2 ∗ y = x y' + x^2*y = x y+x2y=x这里选择求解 y y y,那 x 2 x^2 x2作为系数,对于 y y y而言的所有变量的幂次都没有超过1,所以是线性方程。

一般情况下非线性方程不可解,考察的都是线性方程

小结

  • 齐次和非齐次是和其它概念(线性、非线性)可以并存的,例如 y ′ + p ( x ) ∗ y = q ( x ) y' + p(x)*y=q(x) y+p(x)y=q(x)一阶线性非齐次微分方程,使用朴实无华的公式法即可解决。而 y ′ + p ( x ) ∗ y = 0 y' + p(x)*y=0 y+p(x)y=0 为一阶线性齐次方程,也就是可分离变量类型的微分方程
  • 齐次方程的通解 = k k k × \times × 齐次方程的非零特解,证明如下:
    1. X 1 ∗ X_1^* X1 是齐次方程 A 1 X = 0 A_1X=0 A1X=0 的一个特解,且 X 1 ∗ ≠ 0 X_1^* \neq 0 X1=0,则满足 A 1 X 1 ∗ = 0 A_1X_1^*=0 A1X1=0
    2. 由于 A 1 ( k X 1 ∗ ) = k A 1 X 1 ∗ = k × 0 = 0 A_1(kX_1^*)=k A_1X_1^*=k\times0=0 A1(kX1)=kA1X1=k×0=0,故 k
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值