P5280 [ZJOI2019]线段树

题目链接:洛谷

题目描述:【比较复杂,建议看原题】


这道题太神仙了,线段树上做树形dp。

根据树形dp的套路,都是按照转移的不同情况给节点分类。这里每次modify的时候对于节点的影响也不同,所以我们考虑分类。

(这里借用一张图,%%%sooke大佬)

我们发现每次modify的时候对节点的影响有这5种节点。(因为每棵线段树的形态一致,所以我们只用一棵线段树)

一类点(白色):在 modify 操作中,被半覆盖的点。

二类点(深灰):在 modify 操作中,被全覆盖的点,并且能被遍历到。

三类点(橙色):在 modify 操作中,未被覆盖的点,并且可以得到 pushdown 来的标记。

四类点(浅灰):在 modify 操作中,被全覆盖的点,并且不能被遍历到。

五类点(黄色):在 modify 操作中,未被覆盖的点,并且不可能得到 pushdown 来的标记。

设编号为$x$的节点,在$i$次modify之后,生成的这$2^i$棵线段树中,有$f_{x,i}$棵在这个节点上有标记.

我们对于每一类都推一下。

一类点:因为没有全覆盖,所以新的这些线段树在$x$上是没有标记的。所以$f_{x,i}=f_{x,i-1}+0$

二类点:因为全覆盖了,所以新的这些线段树在$x$上必有标记。所以$f_{x,i}=f_{x,i-1}+2^{i-1}$

三类点:因为要pushdown,所以$x$上有标记当且仅当之前的线段树中$x$及$x$的祖先至少有一个有标记。所以$f_{x,i}=f_{x,i-1}+\ldots$.

Oh,no!出锅了,这里不知道要加多少。

但是仔细一想,发现其实这个也是可以dp的。


设编号为$x$的节点,在$i$次modify之后,生成的这$2^i$棵线段树中,在$x$及$x$的祖先上,没有一个有标记的线段树有$g_{x,i}$棵。

然后继续推。

一类点:对于$g$,因为没有全覆盖,所以$x$和$x$的祖父也是没有标记的。

$$f_{x,i}=f_{x,i-1}+0,g_{x,i}=g_{x,i-1}+2^{i-1}$$

二类点:对于$g$,因为全覆盖了,所以$x$必定有标记。

$$f_{x,i}=f_{x,i-1}+2^{i-1},g_{x,i}=g_{x,i-1}+0$$

三类点:对于$g$,因为未被覆盖,所以对$x$及$x$的祖先并没有影响。

$$f_{x,i}=f_{x,i-1}+2^{i-1}-g_{x,i-1},g_{x,i}=g_{x,i-1}+g_{x,i-1}$$

四类点:对于$f$,因为没有被遍历到,所以对$x$的标记没有影响;对于$g$,因为被全覆盖,所以祖先上必定有标记。

$$f_{x,i}=f_{x,i-1}+f_{x,i-1},g_{x,i}=g_{x,i-1}+0$$

五类点:$f$同四类点;对于$g$,因为没有被覆盖,所以祖先上必定没有标记。

$$f_{x,i}=f_{x,i-1}+f_{x,i-1},g_{x,i}=g_{x,i-1}+g_{x,i-1}$$

初值:$f_{x,0}=0,g_{x,0}=1$

答案是整个线段树所有节点$f$之和,也可以用线段树顺便维护。

但是如果暴力转移就肯定是$O(n)$的,但其实比较复杂的一、二、三类点都至多有$O(\log n)$个,而四、五类点都是区间乘法就行。所以前者暴力转移,后者直接打懒标记。


如果您看得一脸懵逼(我的语文太差),那么看下面。

这里说的对点分类,是按照每一步操作(modify)对每个节点状态的影响(dp转移方程)来分类的。

所以类别并不属于dp状态的一维,只是一个分类讨论的过程。(通常的树形dp都是这个思路,大家可以好好理解一下)

如果您还是看不懂,那就可以看代码了。

 1 #include<cstdio>
 2 #define Rint register int
 3 using namespace std;
 4 typedef long long LL;
 5 const int N = 800003, mod = 998244353;
 6 inline int add(int a, int b){int res = a + b; if(res >= mod) res -= mod; return res;}
 7 inline int dec(int a, int b){int res = a - b; if(res < 0) res += mod; return res;}
 8 int n, m, k = 1, f[N], g[N], lf[N], lg[N], sf[N];
 9 inline void pushf(int x, int val = 2){
10     f[x] = (LL) f[x] * val % mod;
11     lf[x] = (LL) lf[x] * val % mod;
12     sf[x] = (LL) sf[x] * val % mod;
13 }
14 inline void pushg(int x, int val = 2){
15     g[x] = (LL) g[x] * val % mod;
16     lg[x] = (LL) lg[x] * val % mod;
17 }
18 inline void pushdown(int x){
19     if(lf[x] != 1) pushf(x << 1, lf[x]), pushf(x << 1 | 1, lf[x]), lf[x] = 1;
20     if(lg[x] != 1) pushg(x << 1, lg[x]), pushg(x << 1 | 1, lg[x]), lg[x] = 1;
21 }
22 inline void pushup(int x){
23     sf[x] = add(sf[x << 1], add(sf[x << 1 | 1], f[x]));
24 }
25 inline void build(int x, int L, int R){
26     g[x] = lf[x] = lg[x] = 1;
27     if(L == R) return;
28     int mid = L + R >> 1;
29     build(x << 1, L, mid);
30     build(x << 1 | 1, mid + 1, R);
31 }
32 inline void modify(int x, int L, int R, int l, int r){
33     pushdown(x);
34     if(l <= L && R <= r){
35         f[x] = add(f[x], k);
36         pushf(x << 1); pushf(x << 1 | 1);
37         pushup(x);
38         return;
39     }
40     int mid = L + R >> 1, lx = x << 1, rx = x << 1 | 1;
41     g[x] = add(g[x], k);
42     if(r <= mid){
43         modify(lx, L, mid, l, r);
44         pushdown(rx);
45         f[rx] = add(f[rx], dec(k, g[rx]));
46         g[rx] = add(g[rx], g[rx]);
47         pushf(rx << 1); pushf(rx << 1 | 1);
48         pushg(rx << 1); pushg(rx << 1 | 1);
49         pushup(rx);
50     } else if(mid < l){
51         modify(rx, mid + 1, R, l, r);
52         pushdown(lx);
53         f[lx] = add(f[lx], dec(k, g[lx]));
54         g[lx] = add(g[lx], g[lx]);
55         pushf(lx << 1); pushf(lx << 1 | 1);
56         pushg(lx << 1); pushg(lx << 1 | 1);
57         pushup(lx);
58     } else {
59         modify(lx, L, mid, l, r);
60         modify(rx, mid + 1, R, l, r);
61     }
62     pushup(x);
63 }
64 int main(){
65     scanf("%d%d", &n, &m);
66     build(1, 1, n);
67     for(Rint i = 1;i <= m;i ++){
68         int opt, l, r;
69         scanf("%d", &opt);
70         if(opt == 2) printf("%d\n", sf[1]);
71         else {
72             scanf("%d%d", &l, &r);
73             modify(1, 1, n, l, r); k = add(k, k);
74         }
75     }
76 }
Luogu5280

 

转载于:https://www.cnblogs.com/AThousandMoons/p/ntfakicpc.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值