题目链接:洛谷
题目描述:【比较复杂,建议看原题】
这道题太神仙了,线段树上做树形dp。
根据树形dp的套路,都是按照转移的不同情况给节点分类。这里每次modify的时候对于节点的影响也不同,所以我们考虑分类。
(这里借用一张图,%%%sooke大佬)
我们发现每次modify的时候对节点的影响有这5种节点。(因为每棵线段树的形态一致,所以我们只用一棵线段树)
一类点(白色):在 modify 操作中,被半覆盖的点。
二类点(深灰):在 modify 操作中,被全覆盖的点,并且能被遍历到。
三类点(橙色):在 modify 操作中,未被覆盖的点,并且可以得到 pushdown 来的标记。
四类点(浅灰):在 modify 操作中,被全覆盖的点,并且不能被遍历到。
五类点(黄色):在 modify 操作中,未被覆盖的点,并且不可能得到 pushdown 来的标记。
设编号为$x$的节点,在$i$次modify之后,生成的这$2^i$棵线段树中,有$f_{x,i}$棵在这个节点上有标记.
我们对于每一类都推一下。
一类点:因为没有全覆盖,所以新的这些线段树在$x$上是没有标记的。所以$f_{x,i}=f_{x,i-1}+0$
二类点:因为全覆盖了,所以新的这些线段树在$x$上必有标记。所以$f_{x,i}=f_{x,i-1}+2^{i-1}$
三类点:因为要pushdown,所以$x$上有标记当且仅当之前的线段树中$x$及$x$的祖先至少有一个有标记。所以$f_{x,i}=f_{x,i-1}+\ldots$.
Oh,no!出锅了,这里不知道要加多少。
但是仔细一想,发现其实这个也是可以dp的。
设编号为$x$的节点,在$i$次modify之后,生成的这$2^i$棵线段树中,在$x$及$x$的祖先上,没有一个有标记的线段树有$g_{x,i}$棵。
然后继续推。
一类点:对于$g$,因为没有全覆盖,所以$x$和$x$的祖父也是没有标记的。
$$f_{x,i}=f_{x,i-1}+0,g_{x,i}=g_{x,i-1}+2^{i-1}$$
二类点:对于$g$,因为全覆盖了,所以$x$必定有标记。
$$f_{x,i}=f_{x,i-1}+2^{i-1},g_{x,i}=g_{x,i-1}+0$$
三类点:对于$g$,因为未被覆盖,所以对$x$及$x$的祖先并没有影响。
$$f_{x,i}=f_{x,i-1}+2^{i-1}-g_{x,i-1},g_{x,i}=g_{x,i-1}+g_{x,i-1}$$
四类点:对于$f$,因为没有被遍历到,所以对$x$的标记没有影响;对于$g$,因为被全覆盖,所以祖先上必定有标记。
$$f_{x,i}=f_{x,i-1}+f_{x,i-1},g_{x,i}=g_{x,i-1}+0$$
五类点:$f$同四类点;对于$g$,因为没有被覆盖,所以祖先上必定没有标记。
$$f_{x,i}=f_{x,i-1}+f_{x,i-1},g_{x,i}=g_{x,i-1}+g_{x,i-1}$$
初值:$f_{x,0}=0,g_{x,0}=1$
答案是整个线段树所有节点$f$之和,也可以用线段树顺便维护。
但是如果暴力转移就肯定是$O(n)$的,但其实比较复杂的一、二、三类点都至多有$O(\log n)$个,而四、五类点都是区间乘法就行。所以前者暴力转移,后者直接打懒标记。
如果您看得一脸懵逼(我的语文太差),那么看下面。
这里说的对点分类,是按照每一步操作(modify)对每个节点状态的影响(dp转移方程)来分类的。
所以类别并不属于dp状态的一维,只是一个分类讨论的过程。(通常的树形dp都是这个思路,大家可以好好理解一下)
如果您还是看不懂,那就可以看代码了。
1 #include<cstdio> 2 #define Rint register int 3 using namespace std; 4 typedef long long LL; 5 const int N = 800003, mod = 998244353; 6 inline int add(int a, int b){int res = a + b; if(res >= mod) res -= mod; return res;} 7 inline int dec(int a, int b){int res = a - b; if(res < 0) res += mod; return res;} 8 int n, m, k = 1, f[N], g[N], lf[N], lg[N], sf[N]; 9 inline void pushf(int x, int val = 2){ 10 f[x] = (LL) f[x] * val % mod; 11 lf[x] = (LL) lf[x] * val % mod; 12 sf[x] = (LL) sf[x] * val % mod; 13 } 14 inline void pushg(int x, int val = 2){ 15 g[x] = (LL) g[x] * val % mod; 16 lg[x] = (LL) lg[x] * val % mod; 17 } 18 inline void pushdown(int x){ 19 if(lf[x] != 1) pushf(x << 1, lf[x]), pushf(x << 1 | 1, lf[x]), lf[x] = 1; 20 if(lg[x] != 1) pushg(x << 1, lg[x]), pushg(x << 1 | 1, lg[x]), lg[x] = 1; 21 } 22 inline void pushup(int x){ 23 sf[x] = add(sf[x << 1], add(sf[x << 1 | 1], f[x])); 24 } 25 inline void build(int x, int L, int R){ 26 g[x] = lf[x] = lg[x] = 1; 27 if(L == R) return; 28 int mid = L + R >> 1; 29 build(x << 1, L, mid); 30 build(x << 1 | 1, mid + 1, R); 31 } 32 inline void modify(int x, int L, int R, int l, int r){ 33 pushdown(x); 34 if(l <= L && R <= r){ 35 f[x] = add(f[x], k); 36 pushf(x << 1); pushf(x << 1 | 1); 37 pushup(x); 38 return; 39 } 40 int mid = L + R >> 1, lx = x << 1, rx = x << 1 | 1; 41 g[x] = add(g[x], k); 42 if(r <= mid){ 43 modify(lx, L, mid, l, r); 44 pushdown(rx); 45 f[rx] = add(f[rx], dec(k, g[rx])); 46 g[rx] = add(g[rx], g[rx]); 47 pushf(rx << 1); pushf(rx << 1 | 1); 48 pushg(rx << 1); pushg(rx << 1 | 1); 49 pushup(rx); 50 } else if(mid < l){ 51 modify(rx, mid + 1, R, l, r); 52 pushdown(lx); 53 f[lx] = add(f[lx], dec(k, g[lx])); 54 g[lx] = add(g[lx], g[lx]); 55 pushf(lx << 1); pushf(lx << 1 | 1); 56 pushg(lx << 1); pushg(lx << 1 | 1); 57 pushup(lx); 58 } else { 59 modify(lx, L, mid, l, r); 60 modify(rx, mid + 1, R, l, r); 61 } 62 pushup(x); 63 } 64 int main(){ 65 scanf("%d%d", &n, &m); 66 build(1, 1, n); 67 for(Rint i = 1;i <= m;i ++){ 68 int opt, l, r; 69 scanf("%d", &opt); 70 if(opt == 2) printf("%d\n", sf[1]); 71 else { 72 scanf("%d%d", &l, &r); 73 modify(1, 1, n, l, r); k = add(k, k); 74 } 75 } 76 }