【概率论】5-6:正态分布(The Normal Distributions Part II)


title: 【概率论】5-6:正态分布(The Normal Distributions Part II)
categories:
- Mathematic
- Probability
keywords:
- The Normal Distributions
toc: true
date: 2018-03-29 15:02:03

weixingongzhonghao.jpg
Abstract: 本文介绍正态分布的数学性质
Keywords: The Normal Distributions

开篇废话

一共要写四篇,哪来那么多废话。
首先我们要从最基础的原始的正态分布的数学原理说起

Properties of Normal Distributions

Definition

到目前为止,我们还没看到正态分布长什么样。

Definition and p.d.f. A random X has the normal distribution with mean μ\muμ and variance σ2\sigma^2σ2 (−∞&lt;μ&lt;∞-\infty&lt;\mu&lt;\infty<μ< and σ&gt;0\sigma &gt; 0σ>0) if X has a contimuous distribution with the following p.d.f.
f(x∣μ,σ2)=1(2π)12σe−12((x−μ)σ)2for−∞&lt;x&lt;∞ f(x|\mu,\sigma^2)=\frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{1}{2}(\frac{(x-\mu)}{\sigma})^2}\text{for} -\infty&lt;x&lt;\infty f(xμ,σ2)=(2π)21σ1e21(σ(xμ))2for<x<
定义对于我们来说就是个准确的命名过程。那么我们接下来要证明的是定义里说的对不对?
Theorem f(x∣μ,σ2)=1(2π)12σe−12((x−μ)σ)2for−∞&lt;x&lt;∞f(x|\mu,\sigma^2)=\frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{1}{2}(\frac{(x-\mu)}{\sigma})^2}\text{for} -\infty &lt; x&lt; \inftyf(xμ,σ2)=(2π)21σ1e21(σ(xμ))2for<x< is a p.d.f.

思路:证明一个表达式是不是,p.d.f.,肯定要根据p.d.f.的定义,①不能出现负数,②积分结果是1。
首先观察函数,发现其不可能出现负数,所以性质1符合p.d.f.的性质
那么接下来是求积分,并确保是1,不是说不能积分么,这里怎么做呢?
首先我们令 y=x−μσy=\frac{x-\mu}{\sigma}y=σxμ 那么
∫−∞∞f(x∣μ,σ2)dx=∫−∞∞1(2π)1/2e−12y2dywe shall now let:I=∫−∞∞e−12y2dy \int^{\infty}_{-\infty}f(x|\mu,\sigma^2)dx=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{-\frac{1}{2}y^2}dy\\ \text{we shall now let:}\\ I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy f(xμ,σ2)dx=(2π)1/21e21y2dywe shall now let:I=e21y2dy
所以我们只要证明 I=(2π)1/2I=(2\pi)^{1/2}I=(2π)1/2 就算是得到结论了,但是怎么证明呢?我们用用1的特点吧,1和1相乘还是1所以我们让两个积分相乘,我们来到了二重积分的世界解决这个问题:
I2=I×I=∫−∞∞e−12y2dy⋅∫−∞∞e−12z2dz=∫−∞∞∫−∞∞e−12(y2+z2)dydzto the polar coordinates r and θ:I2=∫02π∫0∞e−12(r2)rdrdθsubstitute v=r2/2∫0∞e−vdv=1 \begin {aligned} I^2&amp;=I\times I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy \cdot \int^{\infty}_{-\infty}e^{-\frac{1}{2}z^2}dz\\ &amp;=\int^{\infty}_{-\infty} \int^{\infty}_{-\infty}e^{-\frac{1}{2}(y^2+z^2)}dydz\\ \text{to the polar coordinates } r \text{ and } \theta :\\ I^2&amp;=\int^{2\pi}_{0} \int^{\infty}_{0}e^{-\frac{1}{2}(r^2)}rdrd\theta \\ \text{substitute }v=r^2/2\\ &amp;\int^{\infty}_{0}e^{-v}dv=1 \end{aligned} I2to the polar coordinates r and θ:I2substitute v=r2/2=I×I=e21y2dye21z2dz=e21(y2+z2)dydz=02π0e21(r2)rdrdθ0evdv=1

证毕。
也就证明了两个这个积分相乘的结果是1,但是我们并没有求出他的反函数。

m.g.f.

m.g.f. 一旦得到相应的均值和方差就非常简单了。

Theorem Moment Generating Function.The m.g.f. of the distribution with p.d.f. given by upside is
ψ(t)=eμt+12σ2t2 for −∞&lt;t&lt;∞ \begin{aligned} \psi(t)&amp;=e^{\mu t+\frac{1}{2}\sigma^2t^2}&amp;\text{ for }-\infty&lt;t&lt;\infty \end{aligned} ψ(t)=eμt+21σ2t2 for <t<

证明上面定理的唯一办法就是我们求一下正态分布定义中那个p.d.f.的m.g.f.看结果是否一致。
ψ(t)=E(etX)=∫−∞∞1(2π)1/2etx−(x−μ)22σ2dxsquare inside the brackets:tx−(x−μ)22σ2=μt+12σ2t2−[x−(μ+σ2t)]22σ2Therefore:ψ(t)=Ceμt+12σ2t2where: C=∫−∞∞1(2π)1/2σe−[x−(μ+σ2t)]22σ2dx \begin{aligned} \psi(t)&amp;=E(e^{tX})=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{tx-\frac{(x-\mu)^2}{2\sigma^2}}dx\\ \text{square inside the brackets:}\\ tx-\frac{(x-\mu)^2}{2\sigma^2}&amp;=\mu t+\frac{1}{2}\sigma^2t^2-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}\\ \text{Therefore:}\\ \psi(t)&amp;=Ce^{\mu t+\frac{1}{2}\sigma^2t^2}\\ \text{where: }\\ C&amp;=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}\sigma}e^{-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}}dx \end{aligned} ψ(t)square inside the brackets:tx2σ2(xμ)2Therefore:ψ(t)where: C=E(etX)=(2π)1/21etx2σ2(xμ)2dx=μt+21σ2t22σ2[x(μ+σ2t)]2=Ceμt+21σ2t2=(2π)1/2σ1e2σ2[x(μ+σ2t)]2dx
然后我们用 μ+σ2t\mu+\sigma^2tμ+σ2t 替换掉 μ\muμ 并且 C=1C=1C=1 因此证明了结论的正确性
证毕。

节选自原文地址:https://www.face2ai.com/Math-Probability-5-6-The-Normal-Distributions-P2转载请标明出处

转载于:https://www.cnblogs.com/face2ai/p/9756525.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值