【读书笔记->统计学】09-01 将正态分布运用到其他概率分布-正态分布的相加、线性变换与独立观察结果概念简介

这篇博客探讨了如何将正态分布应用于其他概率分布,特别是关注于正态分布的加法和减法。在新婚夫妇体重的例子中,通过计算期望和方差来确定两人体重总和的概率分布。此外,还解释了线性变换如何影响正态分布,以及如何处理多个独立观察结果的加法,例如4个独立成年人体重之和的概率分布。内容涉及概率论中的期望、方差和独立变量的概念。
摘要由CSDN通过智能技术生成

将正态分布运用到其他概率分布

正态分布的相加

假设一个情境:德克想到了“爱情过山车”的创意,让新婚夫妇在过山车上办婚礼。在这之前,需要确保他所设想的特别座驾能够承载新郎和新娘的重量。他设想的座驾最多承载380磅的重量,求新郎和新娘综合体重不超过这个重量的概率是多少?

假设新娘的体重符合正态分布N(150, 400),新郎的体重符合N(190, 500),单位为“磅”。

正态新娘+正态新郎

新郎和新娘的体重符合正态分布,如下所示:

在这里插入图片描述

我们要求的是新郎和新娘的综合概率分布,即,要求新郎与新娘之和的概率分布。
新 娘 体 重 + 新 郎 体 重 ~ ? 新娘体重+新郎体重~? +
假设新娘和新郎的体重互相独立,则分布形状应与下图有几分相似:

在这里插入图片描述

在连续数据中,身高、体重之类的数据往往符合正态分布。现在我们求的是夫妻的综合体重,也应该符合正态分布。这意味着可以利用概率表查找概率。

回忆:两个独立变量的期望和方差加减

E ( X + Y ) = E ( X ) + E ( Y ) E ( X − Y ) = E ( X ) − E ( Y ) V a r ( X + Y ) = V a r ( X ) + V a r ( Y ) V a r ( X − Y ) = V a r ( X ) + V a r ( Y ) E(X+Y) = E(X)+E(Y) \\ E(X-Y) = E(X)-E(Y) \\ Var(X+Y) = Var(X)+Var(Y) \\ Var(X-Y) = Var(X)+Var(Y) E(X+Y)=E(X)+E(Y)E(XY)=E(X)E(Y)Var(X+Y)=Var(X)+Var(Y)Var(XY)=Var(X)+Var(Y)

上面的规则同样适用于连续数据。我们已知新娘(假设为X)和新郎(假设为Y)是正态分布,以及分别的期望 μ \mu μ和方差 σ 2 \sigma^2 σ2,它们是独立变量,再利用上面的式子,就可以求出综合体重(为X+Y)的概率分布了。

更通用的表达,如果:
X ∼ N ( μ x , σ x 2 ) 且 Y ∼ N ( μ y , σ y 2 ) X \sim N(\mu_x, \sigma^2_x)且Y \sim N(\mu_y, \sigma^2_y) XN(μx,σx2)YN(μy,σy2)

X + Y ∼ N ( μ , σ 2 ) X+Y \sim N(\mu, \sigma^2) X+YN(μ,σ2)
其中
μ = μ x + μ y σ 2 = σ x 2 + σ y 2 \mu = \mu_x + \mu_y \\ \sigma^2 = \sigma^2_x + \sigma^2_y μ=μx+μyσ2=σx2+σy2
在这里插入图片描述

X+Y 的方差大于 X 的方差,也大于 Y 的方差,这使得 X+Y 的曲线比 X 的曲线和 Y 的曲线都拉得长,这一点对于任何正态 X 和 Y 都成立。在将两个变量相加之后,实际上增大了变异性,于是使得分布形状拉长;随着图形拉长,图形还会变得更扁,这样才能使图形下方的总面积仍然为 1。


有时候求的是两个变量之差的概率,X-Y。

同理,
μ = μ x − μ y σ 2 = σ x 2 + σ y 2 \mu = \mu_x - \mu_y \\ \sigma^2 = \sigma^2_x + \sigma^2_y μ=μxμyσ2=σx2+σy2
在这里插入图片描述

方差的加法计算一眼看上去并不直观,不过,这和计算离散概率分布的道理是一样的,尽管我们用 X 减去 Y,但实际上变异性还是增大了,方差之和反映了这种变化。和 X+Y 的分布一样,无论是与 X 相比还是与 Y 相比,X-Y 都导致图形拉长、变扁。

查看 X~Y 的形状,可以看出该曲线形状和 X+Y 的曲线形状一样,只不过中心位置发生了移动。两种概率分布的方差相同,均值各异。

既然我们知道了综合体重的概率分布,那们可以按老样子:算出分布和范围、将分布标准化、查找概率3个步骤算出概率了。

案例答案:

在这里插入图片描述

另一道变量相减的例题:

在这里插入图片描述

正态分布的线性变换与独立观察结果

假设一个情境:如果过山车需要坐4个人,轿车的总载重量为800磅,假定一位成年人的体重分布为: X ∼ N ( 160 , 625 ) X \sim N(160,625) XN(160,625),那么4为成年人的综合体重低于800磅的概率?

线性变换描述了数据的基本变化…

让我们先看 4X 的概率分布,其中 X 为一位成年人的体重。4X 是否适合描述 4 位成年人的概率分布?

4X 的分布其实是 X 的一个线性变换,是 X 进行 aX+b 变换的结果,其中 a 等于 4,b 等于 0,这与我们先前在离散概率分布中遇到过的变换类型完全相同。

线性变换描述的是概率分布中的数值在大小方面的基本变化,即,4X 其实描述的是一个成年人的体重放大四倍后的结果。

在这里插入图片描述

假定你有一个X的线性变换,其形式为 aX+b,其中$ X \sim N (u, σ^2)$,由于X符合正态分布,于是aX+b也属于正态分布。但期望和方差是多少呢?

让我们先算期望。在讲离散概率分布的时候,我们发现 E (aX+b) =aE (X) +b。现在,X 符合正态分布且 E (X) =u,于是我们得出 E (aX+b) =aμ+b。

方差的处理方法与此相似,在讲离散概率分布的时候。我们发现 V a r ( a X + b ) = a 2 V a r ( X ) Var (aX+b) = a^2Var (X) Var(aX+b)=a2Var(X,且这里的 V a r ( X ) = σ 2 Var (X) =\sigma ^2 Var(X)=σ2, 于是得出 V a r ( a X + b ) = a 2 σ 2 Var (aX+b) =a^2 \sigma ^2 Var(aX+b)=a2σ2

合并以上两个结果,得到:
a X + b ∼ N ( a μ + b , a 2 σ 2 ) aX+b \sim N(a\mu+b, a^2 \sigma^2) aX+bN(aμ+b,a2σ2)
即,新均值为 a μ + b a\mu+b aμ+b,新方差为 a 2 σ 2 a^2\sigma^2 a2σ2

而独立观察结果描述的是你有多少数值

我们实际需要计算的是 4 位独立成年人的综合体重的概率分布,而不是对每一位成年人的体重进行变换。即,我们需要算出 X 的 4 个独立观察结果的概率。

在这里插入图片描述

每一位成年人的体重都是 X 的一个观察结果,这意味着每一位成年人的体重都通过 X 的概率分布进行描述。我们需要算出 X 的 4 个独立观察结果的概率分布,也就是要求以下概率:

X 1 + X 2 + X 3 + X 4 X_1+X_2+X_3+X_4 X1+X2+X3+X4
其中 X 1 , X 2 , X 3 和 X 4 X_1,X_2,X_3和X_4 X1,X2,X3X4,是 X 的独立观察结果。

在讲到离散随机变量的独立观察结果的方差和期望时,我们曾经发现:

E ( X 1 + X 2 + … X n ) = n E ( X ) E (X_1+X_2+…X_n) =nE(X) E(X1+X2+Xn)=nE(X)

V a r ( X 1 + X 2 + . . . + X n ) = n V a r ( X ) Var (X_1+X_2+... +X_n) =nVar(X) Var(X1+X2+...+Xn)=nVar(X)

如你所料,相同的算法也适用于连续随机变量,即,如果 X ∼ N ( u , σ 2 ) X \sim N(u,σ^2) XN(u,σ2),则:

X 1 + X 2 + . . . + X n ∼ N ( n μ , n σ 2 ) X_1+X_2+...+X_n \sim N(n\mu, n\sigma^2) X1+X2+...+XnN(nμ,nσ2)

线性变换与独立观测值详细介绍见:【读书笔记->统计学】05-02 “概率”的整体影响-随机变量的线性变换、独立观测值概念简介

总结

在这里插入图片描述

例题解答:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值