时间序列学习笔记2

2. 时间序列基础

In [7]: dates = [(2011,1,1),(2011,2,3),(2011,2,4),(2011,4,23),(2011,4,22),(2011,
   ...: 4,1)]

In [8]: dates = [datetime(*x) for x in dates]

In [14]: ts = Series(np.random.randn(6), index=dates)

# 创建一个以时间戳为index的Series。
In [15]: ts
Out[15]:
2011-01-01    3.627969
2011-02-03    0.731217
2011-02-04    1.178071
2011-04-23   -2.085412
2011-04-22   -0.093829
2011-04-01   -0.157532
dtype: float64

In [16]: type(ts)
Out[16]: pandas.core.series.Series

In [17]: ts.index
Out[17]:
DatetimeIndex(['2011-01-01', '2011-02-03', '2011-02-04', '2011-04-23',
               '2011-04-22', '2011-04-01'],
              dtype='datetime64[ns]', freq=None)

# 和普通的Series一样,可以做Series相加
In [19]: ts + ts[::2]

2011-01-01    7.255939
2011-02-03         NaN
2011-02-04    2.356142
2011-04-01         NaN
2011-04-22   -0.187658
2011-04-23         NaN
dtype: float64

# 时间序列的index类型为datetime64,单位是纳秒
In [20]: ts.index.dtype
Out[20]: dtype('<M8[ns]')

In [21]: stamp = ts.index[0]

In [22]: stamp
Out[22]: Timestamp('2011-01-01 00:00:00')

2.1 索引、选取和子集的构造

索引

# 可以使用datetime格式的索引
In [24]: stamp = ts.index[2]

In [25]: ts[stamp]
Out[25]: 1.1780707665960897

# 也可以使用常用日期格式的字符串类型作为索引。
In [27]: ts['01/01/2011']
Out[27]:
2011-01-01    3.627969
dtype: float64

In [28]: ts['20110101']
Out[28]:
2011-01-01    3.627969
dtype: float64

切片

# 通过日期来直接切片,但是只对Series有效。
# pd.date_range可以将创建时间序列
In [29]: longer_ts = Series(np.random.randn(1000), index=pd.date_range('1/1/2017
    ...: ',periods=1000))

In [30]: longer_ts[:5]
Out[30]:
2017-01-01    0.311815
2017-01-02   -0.424868
2017-01-03    0.198069
2017-01-04    1.011494
2017-01-05   -0.312494
Freq: D, dtype: float64

In [31]: longer_ts[-5:]
Out[31]:
2019-09-23   -0.637869
2019-09-24    0.721613
2019-09-25   -0.914481
2019-09-26    0.036966
2019-09-27    0.677846
Freq: D, dtype: float64

# 获取2017-2月的所有数据
In [32]: longer_ts['2017-2']
Out[32]:
2017-02-01    1.258390
2017-02-02    0.606618
2017-02-03    0.927122
2017-02-04    0.761009
...
2017-02-23   -1.039703
2017-02-24    0.478075
2017-02-25   -0.328411
2017-02-26   -1.019641
2017-02-27    0.186212
2017-02-28   -1.466734
Freq: D, dtype: float64

# 单日数据
In [33]: longer_ts['2017-2-3']
Out[33]: 0.92712152603736908

# 年数据
In [34]: longer_ts['2017'][:5]
Out[34]:
2017-01-01    0.311815
2017-01-02   -0.424868
2017-01-03    0.198069
2017-01-04    1.011494
2017-01-05   -0.312494
Freq: D, dtype: float64


也可以通过不存在的时间戳对Series进行切片。

2.带有重复索引的时间序列

In [35]: dates = pd.DatetimeIndex(['1/1/2000','1/2/2000','1/2/2000','1/2/2000','
    ...: 1/3/2000'])

In [36]: dup_ts = Series(np.arange(5), index=dates)

In [37]: dup_ts
Out[37]:
2000-01-01    0
2000-01-02    1
2000-01-02    2
2000-01-02    3
2000-01-03    4
dtype: int64

# 查看索引是否重复
In [40]: dup_ts.index.is_unique
Out[40]: False

In [41]: dup_ts['1/2/2000']  # 重复, 数组
Out[41]:
2000-01-02    1
2000-01-02    2
2000-01-02    3
dtype: int64

In [42]: dup_ts['1/3/2000']  # 不重复,标量
Out[42]: 4

In [43]: grouped = dup_ts.groupby(level=0)

In [44]: grouped.mean()
Out[44]:
2000-01-01    0
2000-01-02    2
2000-01-03    4
dtype: int64

In [45]: grouped.count()
Out[45]:
2000-01-01    1
2000-01-02    3
2000-01-03    1
dtype: int64

3. 日期的范围、频率及移动

pandas中的时间序列一般是不规则的,没有固定的频率。但是通常需要一某种频率对序列进行分析,
幸运的是pandas有一套工具,帮助我们解决这些问题。

resample

In [49]: dates = pd.DatetimeIndex(['2000-01-02','2000-01-05','2000-01-07','2000-
    ...: 01-08','2000-01-10','2000-01-12'])

In [50]: ts = Series(np.random.randn(6), index=dates)

In [51]: ts
Out[51]:
2000-01-02    0.124049
2000-01-05   -0.840846
2000-01-07   -0.051655
2000-01-08   -0.603824
2000-01-10    0.467815
2000-01-12   -0.201388
dtype: float64

In [52]: ts.resample('D')
Out[52]: /Users/yangfeilong/anaconda/lib/python2.7/site-packages/IPython/utils/dir2.py:65: FutureWarning: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
  canary = getattr(obj, '_ipython_canary_method_should_not_exist_', None)
DatetimeIndexResampler [freq=<Day>, axis=0, closed=left, label=left, convention=start, base=0]

In [53]: ts.resample('D').mean()   # 填充空日期
Out[53]:
2000-01-02    0.124049
2000-01-03         NaN
2000-01-04         NaN
2000-01-05   -0.840846
2000-01-06         NaN
2000-01-07   -0.051655
2000-01-08   -0.603824
2000-01-09         NaN
2000-01-10    0.467815
2000-01-11         NaN
2000-01-12   -0.201388
Freq: D, dtype: float64

3.1 生成日期范围

pandas.date_range可以生成指定长度的日期范围。

In [54]: index = pd.date_range('4/1/2017','6/1/2017') # 生成一段时间的序列,默认00:00

In [55]: index
Out[55]:
DatetimeIndex(['2017-04-01', '2017-04-02', '2017-04-03', '2017-04-04',
               '2017-04-05', '2017-04-06', '2017-04-07', '2017-04-08',
               '2017-04-09', '2017-04-10', '2017-04-11', '2017-04-12',
               '2017-04-13', '2017-04-14', '2017-04-15', '2017-04-16',
               '2017-04-17', '2017-04-18', '2017-04-19', '2017-04-20',
               '2017-04-21', '2017-04-22', '2017-04-23', '2017-04-24',
               '2017-04-25', '2017-04-26', '2017-04-27', '2017-04-28',
               '2017-04-29', '2017-04-30', '2017-05-01', '2017-05-02',
               '2017-05-03', '2017-05-04', '2017-05-05', '2017-05-06',
               '2017-05-07', '2017-05-08', '2017-05-09', '2017-05-10',
               '2017-05-11', '2017-05-12', '2017-05-13', '2017-05-14',
               '2017-05-15', '2017-05-16', '2017-05-17', '2017-05-18',
               '2017-05-19', '2017-05-20', '2017-05-21', '2017-05-22',
               '2017-05-23', '2017-05-24', '2017-05-25', '2017-05-26',
               '2017-05-27', '2017-05-28', '2017-05-29', '2017-05-30',
               '2017-05-31', '2017-06-01'],
              dtype='datetime64[ns]', freq='D')

In [56]: pd.date_range(start='4/1/2017',periods=20)  # 指定长度
Out[56]:
DatetimeIndex(['2017-04-01', '2017-04-02', '2017-04-03', '2017-04-04',
               '2017-04-05', '2017-04-06', '2017-04-07', '2017-04-08',
               '2017-04-09', '2017-04-10', '2017-04-11', '2017-04-12',
               '2017-04-13', '2017-04-14', '2017-04-15', '2017-04-16',
               '2017-04-17', '2017-04-18', '2017-04-19', '2017-04-20'],
              dtype='datetime64[ns]', freq='D')

In [57]: pd.date_range(end='4/1/2017',periods=20)  # 指定结束日期
Out[57]:
DatetimeIndex(['2017-03-13', '2017-03-14', '2017-03-15', '2017-03-16',
               '2017-03-17', '2017-03-18', '2017-03-19', '2017-03-20',
               '2017-03-21', '2017-03-22', '2017-03-23', '2017-03-24',
               '2017-03-25', '2017-03-26', '2017-03-27', '2017-03-28',
               '2017-03-29', '2017-03-30', '2017-03-31', '2017-04-01'],
              dtype='datetime64[ns]', freq='D')

In [58]: pd.date_range('4/1/2017','6/1/2017',freq='BM')  # 指定频率,为月末工作日
Out[58]: DatetimeIndex(['2017-04-28', '2017-05-31'], dtype='datetime64[ns]', freq='BM')

In [59]: pd.date_range('5/3/2017 12:34:12',periods=5) # 默认时分秒 不变
Out[59]:
DatetimeIndex(['2017-05-03 12:34:12', '2017-05-04 12:34:12',
               '2017-05-05 12:34:12', '2017-05-06 12:34:12',
               '2017-05-07 12:34:12'],
              dtype='datetime64[ns]', freq='D')

In [60]: pd.date_range('5/3/2017 12:34:12',periods=5, normalize=True)  # 可以改到0时
Out[60]:
DatetimeIndex(['2017-05-03', '2017-05-04', '2017-05-05', '2017-05-06',
               '2017-05-07'],
              dtype='datetime64[ns]', freq='D')

3.2 频率和日期偏移量

In [61]: # 可以显式的创建频率使用的日期偏离

In [62]: from pandas.tseries.offsets import Hour

In [63]: four_hours = Hour(4)

In [64]: four_hours
Out[64]: <4 * Hours>

In [65]: # 也可以直接使用4H之类的字符串直接指定

In [66]: pd.date_range('1/1/2017', '1/3/2017 22:25',freq='4H')
Out[66]:
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 04:00:00',
               '2017-01-01 08:00:00', '2017-01-01 12:00:00',
               '2017-01-01 16:00:00', '2017-01-01 20:00:00',
               '2017-01-02 00:00:00', '2017-01-02 04:00:00',
               '2017-01-02 08:00:00', '2017-01-02 12:00:00',
               '2017-01-02 16:00:00', '2017-01-02 20:00:00',
               '2017-01-03 00:00:00', '2017-01-03 04:00:00',
               '2017-01-03 08:00:00', '2017-01-03 12:00:00',
               '2017-01-03 16:00:00', '2017-01-03 20:00:00'],
              dtype='datetime64[ns]', freq='4H')

In [67]: pd.date_range('1/1/2017', '1/3/2017 22:25',freq=four_hours)
Out[67]:
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 04:00:00',
               '2017-01-01 08:00:00', '2017-01-01 12:00:00',
               '2017-01-01 16:00:00', '2017-01-01 20:00:00',
               '2017-01-02 00:00:00', '2017-01-02 04:00:00',
               '2017-01-02 08:00:00', '2017-01-02 12:00:00',
               '2017-01-02 16:00:00', '2017-01-02 20:00:00',
               '2017-01-03 00:00:00', '2017-01-03 04:00:00',
               '2017-01-03 08:00:00', '2017-01-03 12:00:00',
               '2017-01-03 16:00:00', '2017-01-03 20:00:00'],
              dtype='datetime64[ns]', freq='4H')


In [68]: from pandas.tseries.offsets import Hour,Minute

# 可以通过相加获得指定长度的时间偏移
In [69]: Hour(1) + Minute(30)
Out[69]: <90 * Minutes>

# 也可以用更简单的字符串
In [70]: pd.date_range('1/1/2017',periods=3, freq='1h30min')
Out[70]:
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 01:30:00',
               '2017-01-01 03:00:00'],
              dtype='datetime64[ns]', freq='90T')

有些偏移是不规律的,pandas自带了一些日期偏移量,供大家使用。如下表:

866969-20170218121002254-35144724.png

866969-20170218121010644-1549311172.png

866969-20170218121131832-1428091506.png

3.3 移动(超前或滞后)数据

shift沿着时间轴将数据进行前移或后移。

In [71]: ts = Series(np.random.randn(4), index=pd.date_range('1/1/2017',periods=
    ...: 4, freq='M'))

In [72]: ts
Out[72]:
2017-01-31   -0.080326
2017-02-28    0.432715
2017-03-31    1.094710
2017-04-30   -1.024227
Freq: M, dtype: float64


In [73]: ts.shift(2)  # 将数据超前
Out[73]:
2017-01-31         NaN
2017-02-28         NaN
2017-03-31   -0.080326
2017-04-30    0.432715
Freq: M, dtype: float64

In [74]: ts.shift(-2)  # 数据滞后
Out[74]:
2017-01-31    1.094710
2017-02-28   -1.024227
2017-03-31         NaN
2017-04-30         NaN
Freq: M, dtype: float64

# 计算本月相对上月的增长率
In [76]: ts/ts.shift(1) - 1
Out[76]:
2017-01-31         NaN
2017-02-28   -6.386994
2017-03-31    1.529866
2017-04-30   -1.935615
Freq: M, dtype: float64

# 加上freq后,日期增长,数据位置行不变
In [78]: ts.shift(2, freq='M')
Out[78]:
2017-03-31   -0.080326
2017-04-30    0.432715
2017-05-31    1.094710
2017-06-30   -1.024227
Freq: M, dtype: float64


# 当然还能加上其他频率,会更加灵活

In [79]: ts.shift(3, freq='D')
Out[79]:
2017-02-03   -0.080326
2017-03-03    0.432715
2017-04-03    1.094710
2017-05-03   -1.024227
dtype: float64

In [80]: ts.shift(1, freq='3D')
Out[80]:
2017-02-03   -0.080326
2017-03-03    0.432715
2017-04-03    1.094710
2017-05-03   -1.024227
dtype: float64

日期位移

# day:偏移日期,可传入数量
# MonthEnd:偏移到月末
In [81]: from pandas.tseries.offsets import Day,MonthEnd

In [82]: now = datetime(2017,2,18)

In [83]: now + 3 * Day() # 通过+-直接计算日期
Out[83]: Timestamp('2017-02-21 00:00:00')

In [84]: now + MonthEnd() # 偏移到月末
Out[84]: Timestamp('2017-02-28 00:00:00')

In [85]: now + MonthEnd(1) # 下月末
Out[85]: Timestamp('2017-02-28 00:00:00')

In [86]: offset = MonthEnd()

In [87]: offset.rollforward(now)  # 滚到本月末
Out[87]: Timestamp('2017-02-28 00:00:00')

In [88]: offset.rollback(now)  # 滚到上月末
Out[88]: Timestamp('2017-01-31 00:00:00')

In [90]: ts = Series(np.random.randn(20),index=pd.date_range('2/18/2017',periods
    ...: =20, freq='4d'))

In [91]: ts.groupby(offset.rollforward).mean()  # 每个日期滚到月末后分组,并求平均值
Out[91]:
2017-02-28   -0.536243
2017-03-31   -0.373386
2017-04-30    0.131691
2017-05-31    1.775742
dtype: float64

In [92]: ts.resample('M',how='mean')  # resample更易
/Users/yangfeilong/anaconda/bin/ipython:1: FutureWarning: how in .resample() is deprecated
the new syntax is .resample(...).mean()
  #!/bin/bash /Users/yangfeilong/anaconda/bin/python.app
Out[92]:
2017-02-28   -0.536243
2017-03-31   -0.373386
2017-04-30    0.131691
2017-05-31    1.775742
Freq: M, dtype: float64

In [93]: ts.resample('M').mean()
Out[93]:
2017-02-28   -0.536243
2017-03-31   -0.373386
2017-04-30    0.131691
2017-05-31    1.775742
Freq: M, dtype: float64

待续。。。

转载于:https://www.cnblogs.com/felo/p/6412910.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值