python数据分析(15)——pandas时间戳索引:Datetimeindex

本文介绍了如何使用Pandas库进行时间序列数据的操作,包括创建时间序列、生成DatetimeIndex及使用date_range函数等方法。通过实例展示了不同参数设置下时间序列的生成方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.时间序列 TimeSeries:以Datetimeindex为index的Series,就是时间序列。

t1=pd.DatetimeIndex(['2017/8/1','2018/8/2','2018/8/3','2018/8/4/','2018/8/5'])
print(t1,type(t1))
DatetimeIndex(['2017-08-01', '2018-08-02', '2018-08-03', '2018-08-04',
               '2018-08-05'],
              dtype='datetime64[ns]', freq=None) <class 'pandas.core.indexes.datetimes.DatetimeIndex'>
#先创建一个Datetimeindex,再创建一个相同长度的Series,将Datetimeindex作为index
st=pd.Series(np.random.rand(len(t1)),index=t1)
print(st,type(st))
print(st.index)
2017-08-01    0.683852
2018-08-02    0.867447
2018-08-03    0.789696
2018-08-04    0.781954
2018-08-05    0.876142
dtype: float64 <class 'pandas.core.series.Series'>
DatetimeIndex(['2017-08-01', '2018-08-02', '2018-08-03', '2018-08-04',
               '2018-08-05'],
              dtype='datetime64[ns]', freq=None)              

2.pandas.date_range():直接生成Datetimeindex
两种生成方式:1.start+end ; 2.start / end+period
默认频率:天

t1=pd.date_range('2017/1/4','2017/1/9',normalize=True)
print(t1)
DatetimeIndex(['2017-01-04', '2017-01-05', '2017-01-06', '2017-01-07',
               '2017-01-08', '2017-01-09'],
              dtype='datetime64[ns]', freq='D')

periods:表示时间日期,从start开始往后或end往前生成n天

t2=pd.date_range('2017/1/4',periods=10)
print(t2)
DatetimeIndex(['2017-01-04', '2017-01-05', '2017-01-06', '2017-01-07',
               '2017-01-08', '2017-01-09', '2017-01-10', '2017-01-11',
               '2017-01-12', '2017-01-13'],
              dtype='datetime64[ns]', freq='D')

增加时分秒:

t3=pd.date_range('2017/1/4 15:30:00',periods=10)
print(t3)
DatetimeIndex(['2017-01-04 15:30:00', '2017-01-05 15:30:00',
               '2017-01-06 15:30:00', '2017-01-07 15:30:00',
               '2017-01-08 15:30:00', '2017-01-09 15:30:00',
               '2017-01-10 15:30:00', '2017-01-11 15:30:00',
               '2017-01-12 15:30:00', '2017-01-13 15:30:00'],
              dtype='datetime64[ns]', freq='D')

*参数解读:
pandas.date_range(start=None,end=None,periods=None,freq=’D’,tz=None,normalize=False,name=None,colsed=None,**kwags)
start:开始时间
end:结束时间
periods:偏移量
freq:频率,默认天,也可以是B(工作日),H(小时), T/MIN(分),S(秒),L(毫秒),U(微秒),pd.bdate_range()默认为工作日
tz:时区
normalize:时间正则化到午夜时间戳,(直接变成0:00:00)
name:时间索引对象名称
closed:决定日期区间,默认为None的情况下是左闭右闭,left为左闭右开,right为左开右闭*

LVS(Linux Virtual Server)是一种基于 Linux 系统的负载均衡集群技术,它主要用于将网络流量分发到多个服务器上,以提高系统的可靠性、可扩展性和性能。 LVS 集群一般包括四个组件:调度器(LVS 调度器)、前端服务器(负载均衡器)、后端服务器(真实服务器)和存储服务器(用于共享数据)。首先,调度器接收来自客户端的请求,然后根据配置的调度算法(如轮询、加权轮询、最小连接数等)将请求分发到多个前端服务器。前端服务器接收到请求后,通过相应的负载均衡算法将请求转发到后端的真实服务器上进行处理。在整个过程中,存储服务器用于存放共享的数据,以确保所有的真实服务器都能获取到相同的数据,并提供一致的服务。 LVS 集群的优点是能够提高网站的稳定性和可靠性,当某一台服务器出现故障时,调度器会自动将请求分发到其他可用的服务器上,从而保证服务的连续性。同时,LVS 集群还能够通过增加前端服务器和后端服务器的数量来提高系统的性能和吞吐量,以满足不断增长的用户需求。 在实际应用中,LVS 集群需要合理配置,包括选择合适的调度算法、调整每台服务器的权重、选择适当的硬件设备等。此外,还需要及时监控集群的运行状态,及时发现和解决故障,以确保整个系统的正常运行。 总的来说,LVS 负载均衡集群是一种强大而高效的集群技术,能够帮助企业提高系统的可靠性和性能,是现代互联网应用中不可或缺的重要组成部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值