直线拟合求交点_(视频)直线与圆问题

博客给出多个平面直角坐标系中的示例,涉及直线平行求参数、直线与圆的切线问题、圆的标准方程求解、直线方程求解,以及椭圆标准方程求解等,包含直线与圆、椭圆的多种位置关系及相关计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

85eaea4d8a4ff4b6f155418dec273a7f.png

15789adbb6c3e918031259af32f64b83.png

例1.(1)已知在平面直角坐标系xOy中,直线l1:,

l2:,若直线l1l2,则m=           .

(2)过直线l:上任意一点P作圆C:的一条切线,切点为A,若存在定点B(,),

使得PA=PB恒成立,则﹣=          .

(3)在平面直角坐标系xOy中,若直线xmym+2=0(mR)上存在点P,使得过点P向圆O:

作切线PA(切点为A),满足PO=PA,则实数m的取值范围为          .

(4)在平面直角坐标系中,已知圆,圆与圆外切与点,且过点,则圆的标准方程为          .

(5)在平面直角坐标系中,已知圆,过轴上一点作直线与圆相交于

两点,若以为直径的圆恰好经过原点,则直线的斜率的取值范围为          .

例2、如图,在平面直角坐标系xOy中,已知点P(2,4),圆O:与x轴的正半轴的交点是Q,

过点P的直线l与圆O交于不同的两点A,B.

(1)若直线ly轴交于D,且,求直线l的方程;

(2)设直线QA,QB的斜率分別是,,求+的值;

(3)设AB的中点为M,点N(,0),若MN=OM,求△QAB的面积.

例3、如图,在平面直角坐标系中,已知椭圆的离心率为,椭圆的左右顶点

分别为,右准线方程为,以右顶点为圆心,半径为的圆交椭圆于点

(点位于轴上方),直线与圆交于另一点.

(1)求椭圆的标准方程;(2)若直线与圆相切,求圆的标准方程;

(3)若,求直线的方程.

例1.(1)已知在平面直角坐标系xOy中,直线l1:,

l2:,若直线l1l2,则m=           .

(2)过直线l:上任意一点P作圆C:的一条切线,切点为A,若存在定点B(,),

使得PA=PB恒成立,则﹣=          .

(3)在平面直角坐标系xOy中,若直线xmym+2=0(mR)上存在点P,使得过点P向圆O:

作切线PA(切点为A),满足PO=PA,则实数m的取值范围为          .

(4)在平面直角坐标系中,已知圆,圆与圆外切与点,且过点,则圆的标准方程为          .

(5)在平面直角坐标系中,已知圆,过轴上一点作直线与圆相交于

两点,若以为直径的圆恰好经过原点,则直线的斜率的取值范围为          .

例2、如图,在平面直角坐标系xOy中,已知点P(2,4),圆O:与x轴的正半轴的交点是Q,

过点P的直线l与圆O交于不同的两点A,B.

(1)若直线ly轴交于D,且,求直线l的方程;

(2)设直线QA,QB的斜率分別是,,求+的值;

(3)设AB的中点为M,点N(,0),若MN=OM,求△QAB的面积.

例3、如图,在平面直角坐标系中,已知椭圆的离心率为,椭圆的左右顶点

分别为,右准线方程为,以右顶点为圆心,半径为的圆交椭圆于点

(点位于轴上方),直线与圆交于另一点.

(1)求椭圆的标准方程;(2)若直线与圆相切,求圆的标准方程;

(3)若,求直线的方程.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值