这是一个好题,感觉是noi2018里面最好的题目,考验打表能力,动态规划和对卡特兰数的理解。
1 #include<bits/stdc++.h> 2 using namespace std; 3 int const N=1000000+10; 4 int const mod=998244353; 5 int n,a[N],pw[N<<1],inv[N<<1],vis[N]; 6 int ksm(int x,int y){ 7 int ret=1; 8 while (y){ 9 if(y&1) ret=1LL*ret*x%mod; 10 x=1LL*x*x%mod; 11 y>>=1; 12 } 13 return ret; 14 } 15 int calc(int x,int y){ 16 if(x<y) return 0; 17 return 1LL*pw[x]*inv[y]%mod * inv[x-y]%mod; 18 } 19 int main(){ 20 //freopen("inverse.in","r",stdin); 21 //freopen("inverse.out","w",stdout); 22 int cas; 23 scanf("%d",&cas); 24 pw[0]=1; 25 for(int i=1;i<=2000000;i++) 26 pw[i]=1LL*pw[i-1]*i%mod; 27 inv[2000000]=ksm(pw[2000000],mod-2); 28 for(int i=1999999;i>=0;i--) 29 inv[i]=1LL*inv[i+1]*(i+1)%mod; 30 while (cas--){ 31 scanf("%d",&n); 32 for(int i=1;i<=n;i++) 33 scanf("%d",&a[i]); 34 int mv=0,ans=0,mn=1; 35 memset(vis,0,sizeof(vis)); 36 for(int i=1;i<=n;i++){ 37 int lim=max(mv+1,a[i]+1); 38 vis[a[i]]=1; 39 if(lim<=n) 40 ans=((ans+calc(2*n-i-lim+1,n-i+1)-calc(2*n-i-lim+1,n-i+2))%mod + mod) % mod; 41 if(a[i]>mv) mv=a[i]; 42 else if(a[i]!=mn) break; 43 while (vis[mn]) mn++; 44 } 45 printf("%d\n",ans); 46 47 } 48 return 0; 49 }