四分图匹配
题目描述
一天晚上,zzh 在做梦,忽然梦见了她。
见到她,zzh 也不去看她,只顾低头自语……
“噫,OI 这个东西,真是无奇不有。”
“嘿,你又学了什么?”
“嗯,学到了一种算法,”zzh 装作很神秘的样子,“在生活中有着广泛的应
用,这个算法由匈牙利数学家 Edmonds 于 1965 年提出……”
“哦,那是二分图匹配?”
“咦,你不学 OI,你怎么知道?”
她微微一笑。
“哼!你又不学 OI,你说的什么二分图匹配,只是道听途说而已吧?”
“既然你这么说,那就给你出一道题。听好咯!”
定义四分图,为能将其点集分成四部分,各部分内部没有边的特殊无向图。
定义环的长度,为环中的边数。
定义四分图的一个匹配,为在四分图的边集中提取出一个子集,使得集合中
的边连起来之后,能够构成若干(设为 K)个长度为四的环,每个点最多属于一
个环,并且环上的四个顶点恰好依次取自四分图的四个子点集。其中 K 定义为
四分图的匹配数。
定义四分图的最大匹配,为匹配数最大的匹配方案。
定义四分图的两个匹配是不同的,仅当至少有一条边在一个匹配中是匹配边,
在另一个匹配中不是匹配边。
定义四分图的最大匹配方案数 S,为四分图最大匹配集合的元素个数。
现在对于一张的四分图,要求求其最大匹配数,与其最大匹配方案数。
图的总点数、总边数均不超过 100。
zzh 听完,好不容易记住了定义,结果发现并不会做……于是他只好低下头:
“唉,这题太难了……”
“好吧,那我把这题弱化一下,我把图改成一张特殊的四分图。”
记四个点集分别为 A、B、C、D,给出的四分图按如下规则构造:
点编号(均为整数)范围:
A 集:1..N B 集:1..N C 集:1..2N-1 D 集:1..2N-1
连边情况:
对于所有满足 1≤i,j≤N 的数字对,均有边
A[i]------------------B[j]
| |
C[N+i-j]------D[i+j-1] “既然图已经满足特殊性了,那么我也应该拿掉一个限制。”她笑着说,“我
把边数不超过 100 这个条件去掉。点数的范围就不更改了。”
zzh 又开始苦思冥想,他想了好多好多,想了好久好久,但是最终……
“我不会做……”zzh 低下了头,声音压得很低很低。
“服不服?”
“不服!”
“好吧,看你不服,我把问题再弱化一下!我把点数限制设为不超过 7,这
下,你总应该能做出来了吧?”
zzh 又想了好久好久,结果发现仍然是不会做……这时,床头的闹铃划破了
梦的喧嚣……
现在,zzh 只想问问大家,这题弱化版的弱化版,到底怎么做?
输入描述
一行一个数字,N。
输出描述
第一行输出 K 的最大值,第二行输出 S。
输入样例
2
输出样例
2
4
数据范围
测试点编号 N=3 4 5 6 7
sol:打表好题。。。
#include <cstdio> bool ab[40][40],ac[40][40],bd[40][40],cd[40][40]; int e[1200000]; int i,j,n; long long s; inline void dfs(int x,int bb,int cc,int dd) { if (x==n+1) s++; else { for (int b=bb;b!=0;b=b-(b&(-b))) { int i=e[b&(-b)]; if (ab[x][i]) for (int c=cc;c!=0;c=c-(c&(-c))) { int j=e[c&(-c)]; if (ac[x][j]) for (int d=dd;d!=0;d=d-(d&(-d))) { int k=e[d&(-d)]; if ((bd[i][k]) && (cd[j][k])) dfs(x+1,bb^(1<<(i-1)),cc^(1<<(j-1)),dd^(1<<(k-1))); } } } } return; } int main() { scanf("%d",&n); for (i=1;i<=n;i++) for (j=1;j<=n;j++) ab[i][j]=ac[i][n+i-j]=bd[j][i+j-1]=cd[n+i-j][i+j-1]=true; for (i=1,j=1;j<=2*n;i=i<<1,j++) e[i]=j; dfs(1,(1<<n)-1,(1<<(2*n-1))-1,(1<<(2*n-1))-1); printf("%d\n%lld\n",n,s); return 0; }
#include <bits/stdc++.h> using namespace std; typedef int ll; inline ll read() { ll s=0; bool f=0; char ch=' '; while(!isdigit(ch)) {f|=(ch=='-'); ch=getchar();} while(isdigit(ch)) {s=(s<<3)+(s<<1)+(ch^48); ch=getchar();} return (f)?(-s):(s); } #define R(x) x=read() inline void write(ll x) { if(x<0) {putchar('-'); x=-x;} if(x<10) {putchar(x+'0'); return;} write(x/10); putchar((x%10)+'0'); } #define W(x) write(x),putchar(' ') #define Wl(x) write(x),putchar('\n') int n; int main() { freopen("quadripartite.in","r",stdin); freopen("quadripartite.out","w",stdout); R(n); Wl(n); if(n==3) puts("78"); else if(n==4) puts("4196"); else if(n==5) puts("456920"); else if(n==6) puts("88142144"); else puts("27913176688"); return 0; }