2021年2月10日发(作者:循序渐进)
通过算例熟悉
MATLAB
模糊控制工具箱
p>
设计一个二维模糊控制器控制一个一阶
被控对象
G
(
s
)
?
数的大小,观察模糊控制的鲁棒性。
1
、模糊推理的五个步骤
1)
输入变量的模糊化
这是模糊推理的第
一步,
是获取输入变量,
并确定它们的隶属函数,
从而确定属于每个
模糊集合的隶属度。
2)
应用模糊算子
完成了输入模糊化,
就知道了对于每个模糊规则,
前提
中每一个部分被满足的程度。
如
果一个给定规则的前提有多个部
分,
则要应用模糊算子来获得一个数值,
这个数值表示前提
p>
对于该规则的满足程度。
3)
应用推理方法
推理的类型有
mamdani
和
sugeno
推理。
Mamdani
推理法是一种在模糊控制中普
遍使用的
方法,它本质上仍然是一种合成推理方法,只不过对模糊蕴涵关系取不同的形式
而已。
Mamdani
型推理,从每个规则的结果中得到的模糊
集通过聚类运算后得到结果模糊集,被
反模糊化后得到系统输出。
Sugeon
型推理:其中每个规则的结果是输入的线性组合,而输
<
br>出是结果的加权线性组合。
4)
输出的聚类
由于决策是在对模糊推理
系统中所有规则进行综合考虑的基础上做出的,
因此必须以某
种
方式将规则结合起来以做出决策。
聚类就是这样一个过程,
它将
表示每个规则输出的模糊
集结合成一个单独的模糊集。聚类方法有
max
,
probor
(概率乘)<
/p>
,
sum
。其中,
sum
执行的
是各规则输出集的简单相加。
<
br>
5)
解模糊化
<
p>
解模糊化过程也叫反模糊化过程,
它的输入是一个模糊集,
既上一步的聚类输出模糊集,
其输出为一个单值。
模糊
集的聚类中包含很多输出值,
因此必须进行反模糊化,
以从集合
中
解析出一个单输出值。
2
、模糊逻辑工具箱的介绍
模糊逻辑工具箱提供的图形用户界面(
GUI
)
工具有五个:模糊推理系统(
FIS
)编辑
器;隶属函数编辑器;模糊规则编辑器;模糊规则观察器;输出曲面观察器。
p>
1
)
FIS
编辑器
:
Matlab
的
<
br>FIS
界面如图
1
所示。
FIS
处理系统有多少个输入变量,输出变量,名称是什
么,模糊算子
“
与
”(mi
n
,
prod
乘积,
<
br>custom
自定义
)
,
“
或
”(max
大,
probor
概率统计方法,
cus
tom)
,推理方法(
min
,
prod
,
custom
)
,聚类方法(
max
,
probor
,
sum
,
custom
)
,解模
糊的方法(
centroid
质心法,
bisector
中位线法,
middle of
maximum
,
largest of
maximum
,
smallest of
maximum
)
。
1
,然后改变控制对象参
Ts
?
1
图
1
模糊推理系统(
FIS
)界面
2)
隶属函数编辑器:
确定各个变量的论域和显示范围(左下角编辑区内)
,如图
2
所示。定义每个变量的模
糊集的名称
(如负大、
负中、
负小、
零、
p>
正小、
正中、
正大)
和个数
(
Edit
菜单中<
p>
Add MFs
)
,
以及
每个模糊变量的隶属函数类型和参数
(点击变量的隶属函数曲线后在右下角编辑区内修<
/p>
改)
。
隶属函数的类型有:
trimf
,
trapmf
,
gbellmf
,
gaussmf<
/p>
,
gauss2mf
,
<
br>sigmf
,
dsigmf
,<
/p>
psigmf
,
pimf
,
smf
,
zmf
图
2
隶属函数编辑器
3)
模糊规则编辑器:
完成了对变量的命名,
隶属函数也有了适当的形状和名字,
就可以编辑模糊规则。
选择
连接关系(
and
或者
or
)
,权重,在编辑器左边选择一个输入变量,并选择它的语言值,然
后在编辑器
右边的输出变量中选择一个输出变量,
并选中它的语言值,
然后
将这种联系添加
到模糊规则中。
Options/Format
下可以选择模糊规则不同的格式,默认的是
verbose
p>
(模糊规则的详细格
式)
,还有<
p>
symbolic
(符号格式)
,
indexed
(高度压缩格式)