扩展 KMP

扩展 KMP

来源
问题定义:给定两个字符串 S 和 T(长度分别为 n 和 m),下标从 0 开始,定义 extend[i] 等于 S[i]... S[n-1] 与 T 的最长相同前缀的长度,求出所有的 extend[i]。举个例子,看下表:

i01234567
Saaaaabbb
Taaaaac
extend[i]54321000

为什么说这是 KMP 算法的扩展呢?显然,如果在 S 的某个位置 i 有 extend[i] 等于 m,则可知在 S 中找到了匹配串 T,并且匹配的首位置是 i。而且,扩展 KMP 算法可以找到 S 中所有 T 的匹配。接下来具体介绍下这个算法。

一:算法流程

20180412_01.png
如上图,假设当前遍历到 S 串位置 i,即 extend[0]...extend[i - 1] 这 i 个位置的值已经计算得到。设置两个变量,a 和 p。p 代表以 a 为起始位置的字符匹配成功的最右边界,也就是 "p = 最后一个匹配成功位置 + 1"。相较于字符串 T 得出,S[a...p) 等于 T[0...p-a)

再定义一个辅助数组 int next[],其中 next[i] 含义为:T[i]... T[m - 1] 与 T 的最长相同前缀长度,m 为串 T 的长度。举个例子:

i012345
Taaaaac
next[i]643210

20180412_02.png
S[i]对应 T[i - a],如果 i + next[i - a] < p,如上图,三个椭圆长度相同,根据 next 数组的定义,此时extend[i] = next[i - a]。

(3)
20180412_03.png
如果 i + next[i - a] == p 呢?如上图,三个椭圆都是完全相同的,S[p] != T[p - a]且T[p - i] != T[p - a],但S[p]有可能等于 T[p - i],所以我们可以直接从 S[p]T[p - i] 开始往后匹配,加快了速度。

(4)

20180412_04.png
如果 i + next[i - a] > p 呢?那说明 S[i...p)与T[i-a...p-a) 相同,注意到 S[p] != T[p - a]且T[p - i] == T[p - a] ,也就是说 S[p] != T[p - i],所以就没有继续往下判断的必要了,我们可以直接将 extend[i] 赋值为 p - i

(5)最后,就是求解 next 数组。我们再来看下next[i]与extend[i]的定义:

  • ext[i]T[i]...T[m - 1] 与 T 的最长相同前缀长度;
  • extend[i]S[i]...S[n - 1] 与 T 的最长相同前缀长度。
    恍然大悟,求解next[i]的过程不就是 T 自己和自己的一个匹配过程嘛,下面直接看代码。

二:代码

#include <iostream>
#include <string>

using namespace std;

/* 求解 T 中 next[],注释参考 GetExtend() */
void GetNext(string & T, int & m, int next[])
{
    int a = 0, p = 0;
    next[0] = m;

    for (int i = 1; i < m; i++)
    {
        if (i >= p || i + next[i - a] >= p)
        {
            if (i >= p)
                p = i;

            while (p < m && T[p] == T[p - i])
                p++;

            next[i] = p - i;
            a = i;
        }
        else
            next[i] = next[i - a];
    }
}

/* 求解 extend[] */
void GetExtend(string & S, int & n, string & T, int & m, int extend[], int next[])
{
    int a = 0, p = 0;
    GetNext(T, m, next);

    for (int i = 0; i < n; i++)
    {
        if (i >= p || i + next[i - a] >= p) // i >= p 的作用:举个典型例子,S 和 T 无一字符相同
        {
            if (i >= p)
                p = i;

            while (p < n && p - i < m && S[p] == T[p - i])
                p++;

             **extend[i]** = p - i;
            a = i;
        }
        else
             **extend[i]** = next[i - a];
    }
}

int main()
{
    int next[100];
    int extend[100];
    string S, T;
    int n, m;
    
    while (cin >> S >> T)
    {
        n = S.size();
        m = T.size();
        GetExtend(S, n, T, m, extend, next);

        // 打印 next
        cout << "next:   ";
        for (int i = 0; i < m; i++)
            cout << next[i] << " ";
 
        // 打印 extend
        cout << "\nextend: ";
        for (int i = 0; i < n; i++)
            cout <<  **extend[i]** << " ";

        cout << endl << endl;
    }
    return 0;
}

数据测试如下:

aaaaabbb
aaaaac
next:   6 4 3 2 1 0
extend: 5 4 3 2 1 0 0 0

abc
def
next:   3 0 0
extend: 0 0 0

转载于:https://www.cnblogs.com/tttfu/p/11309577.html

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值