DTW算法可以用来衡量两个时间序列的相似性,而且两个时间序列的长度可以不必相等。
DTW算法原理
如图1所示,图中矩阵$dij$表示时间序列$A$时刻$i$和时间序列$B$时刻$j$的距离,DTW算法就是要从$(1,1)$到$(m,n)$找到一条路径使得累计$dij$最小。

图1:DTW算法示意图,r表示warping window,红色圆点表示累计距离最小的路径。
如何找到这条路径呢,我们这里采用动态规划算法。假设我们要求到位置$(i,j)$的最小累计距离$D(i,j)$,那么它只能由$D(i-1,j)$,$D(i,j-1)$和$D(i,j)$这三个位置的最小累计距离中寻找,也就是$D(i,j)=dij+min[D(i-1,j),D(i,j-1),D(i,j)]$。如图2所示,最优路径只能从三个临近位置寻找。最终,$D(m,n)$越小,表示两个时间序列间的相似性越高。


DTW算法用于衡量长度不等的时间序列相似性,通过动态规划找到累计距离最小的路径。本文介绍了DTW算法原理,并提供了Python实现。
最低0.47元/天 解锁文章
944

被折叠的 条评论
为什么被折叠?



