时间序列匹配之dtw的python实现(一)

本文介绍了动态时间扭曲(DTW)算法的基本原理和使用Python库dtw的实例,通过曼哈顿距离计算x和y时间序列的最短路径。通过实例演示了如何计算成本矩阵、累计成本矩阵和路径,并解释了acc_cost_matrix的累加特性。后续文章将探讨dtw-python库的更多功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Dynamic Time Warping(动态时间序列扭曲匹配,简称DTW)是时间序列分析的经典算法,用来比较两条时间序列之间的距离,发现最短路径。笔者在github上搜索dtw时发现了两个比较经典的库:dtw和dtw-python。dtw库的功能少但简单容易理解,dtw-python的功能齐全并提供了清晰的作图。在这里我们先介绍dtw库,dtw-python库留到下一篇文章介绍。

示例

对dtw算法的基本原理还不是很理解的可以点击这里,里面介绍的相当清楚了,接下来我们进入正题。

import numpy as np
#来自官方库的示例,代码未动,但注解原创。
#y是x的子序列,从x的第三个数字开始一一匹配
x = np.array([2, 0, 1, 1, 2, 4, 2, 1, 2, 
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值