题面link
\(\text{Solution:}\)
题目要我们求所有的卡牌期望伤害之和,即 \(\sum_\limits{i=1}^nE(第 i 张牌的伤害)\) ,
\[ \begin{aligned} &\sum_\limits{i = 1}^nE(第i张牌的伤害)\\ =&\sum_\limits{i = 1}^nP(第i张牌使用的概率)×d(i) \end{aligned} \]
所以要求 \(P(第i张牌使用的概率)\) 。
\(p(i)\) 为第i张牌发动技能的概率,
发现 \(P(1) = 1 - (1 - p(1))^r\) , 但是由于每张牌使用一次就结束该轮,我们不是很好地能求出其它的概率,于是考虑递推概率。
设 \(f[i, j]\) 表示前 \(i\) 张牌已经出了 \(j\) 张牌的概率,
- \(f[i, j] \times (1 - p[i + 1])^{r - j} \ \rightarrow\ f[i + 1, j]\) (第 \(i+1\) 张牌不发动技能)
- \(f[i, j] \times (1 - (1 - p[i + 1])^{r - j})\ \rightarrow\ f[i + 1, j + 1]\) (第 \(i+1\) 张牌发动技能)
\[ P(i)=\sum_{j=0}^rf[i - 1, j]\times (1 - (1 - p[i])^{r - j}) \]
然后就做完了。
由于每张牌使用一次就结束该轮,使得我们不是很好地从回合数的角度设状态,而要从牌的角度上设,又因为 “如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌)" ,所以要有一维 ”当 前用了多少牌" 这一状态。
#include <set>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <assert.h>
#include <algorithm>
using namespace std;
#define LL long long
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO debug("GO\n")
inline int rint() {
register int x = 0, f = 1; register char c;
while (!isdigit(c = getchar())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
return x * f;
}
template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }
const int N = 300;
//fp[i]即为P(i)
double fp[N], f[N][N], ans, p[N], d[N], powp[N][N];
int n, r;
void Init() {
for (int i = 1; i <= n; ++ i) {
powp[i][0] = 1;
for (int j = 1; j <= r; ++ j)
powp[i][j] = powp[i][j - 1] * (1 - p[i]);
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("xhc.in", "r", stdin);
freopen("xhc.out", "w", stdout);
#endif
int T;
scanf("%d", &T);
while (T --) {
scanf("%d%d", &n, &r);
for (int i = 1; i <= n; ++ i)
scanf("%lf%lf", p + i, d + i);
Init();
memset(fp, 0, sizeof (fp));
memset(f, 0, sizeof (f));
f[1][0] = powp[1][r];
f[1][1] = fp[1] = 1 - f[1][0];
for (int i = 1; i <= n; ++ i) {
for (int j = 0; j <= r; ++ j) {
fp[i] += f[i - 1][j] * (1 - powp[i][r - j]);
f[i][j] += f[i - 1][j] * powp[i][r - j];
if (j)
f[i][j] += f[i - 1][j - 1] * (1 - powp[i][r - j + 1]);
}
}
double ans = 0;
for (int i = 1; i <= n; ++ i)
ans += fp[i] * d[i];
printf("%.10lf\n", ans);
}
}