<题目链接>
奔小康赚大钱
Problem Description
传
说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子。
这可是一件大事,关系到人民的住房问题啊。村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子住的话,容易引起不安定因素),每家必须分配到一间房子且只能得到一间房子。
另一方面,村长和另外的村领导希望得到最大的效益,这样村里的机构才会有钱.由于老百姓都比较富裕,他们都能对每一间房子在他们的经济范围内出一定的价格,比如有3间房子,一家老百姓可以对第一间出10万,对第2间出2万,对第3间出20万.(当然是在他们的经济范围内).现在这个问题就是村领导怎样分配房子才能使收入最大.(村民即使有钱购买一间房子但不一定能买到,要看村领导分配的).
这可是一件大事,关系到人民的住房问题啊。村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子住的话,容易引起不安定因素),每家必须分配到一间房子且只能得到一间房子。
另一方面,村长和另外的村领导希望得到最大的效益,这样村里的机构才会有钱.由于老百姓都比较富裕,他们都能对每一间房子在他们的经济范围内出一定的价格,比如有3间房子,一家老百姓可以对第一间出10万,对第2间出2万,对第3间出20万.(当然是在他们的经济范围内).现在这个问题就是村领导怎样分配房子才能使收入最大.(村民即使有钱购买一间房子但不一定能买到,要看村领导分配的).
Input
输入数据包含多组测试用例,每组数据的第一行输入n,表示房子的数量(也是老百姓家的数量),接下来有n行,每行n个数表示第i个村名对第j间房出的价格(n<=300)。
Output
请对每组数据输出最大的收入值,每组的输出占一行。
Sample Input
2
100 10
15 23
Sample Output
123
解题分析:
带权二分图的最优匹配问题,需要用到KM算法。KM算法讲解可以看这里
>>>
以下代码和讲解转载于
>>>
但是,我们普通的dfs版的KM算法复杂度比较伪,只针对随机数据复杂度为$O(n^3)$,对于极限数据(w[i][j]很大)slack优化作用不显著,有可能被卡到$O(n^4)$
dfs版KM:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N=310; const int INF = 0x3f3f3f3f; int n,nx,ny; int linker[N],lx[N],ly[N],slack[N]; //lx,ly为顶标,nx,ny分别为x点集y点集的个数 int visx[N],visy[N],w[N][N]; int DFS(int x){ visx[x]=1; for(int y=1;y<=ny;y++){ if(visy[y])continue; //每次只常识匹配一次y,相当于匈牙利中的vis[] int tmp=lx[x]+ly[y]-w[x][y]; //x,y期望值之和与x,y之间的权值的差值 if(tmp==0){ //x,y之间期望值==他们之间权值时符合要求 visy[y]=1; if(linker[y]==-1 || DFS(linker[y])){ //y没有归属者,或者y的原始归属者能够找到其他归属者 linker[y]=x; return 1; } }else slack[y]=min(slack[y],tmp); } return 0; } int KM(){ int i,j; memset(linker,-1,sizeof(linker)); memset(ly,0,sizeof(ly)); //初始化,y的期望值为0 for(i=1;i<=nx;i++) //lx为x的期望值,lx初始化为与它关联边中最大的 for(j=1,lx[i]=-INF;j<=ny;j++) if(w[i][j]>lx[i]) lx[i]=w[i][j]; //为每一个x尝试解决归属问题 for(int x=1;x<=nx;x++){ for(i=1;i<=ny;i++)slack[i]=INF; while(true){ memset(visx,0,sizeof(visx)); memset(visy,0,sizeof(visy)); if(DFS(x))break; //若成功(找到了增广轨),则该点增广完成,进入下一个点的增广 //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。 //方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d, //所有在增广轨中的Y方点的标号全部加上一个常数d int d=INF; for(i=1;i<=ny;i++) if(!visy[i])d=min(slack[i],d); //d为没有匹配到的y的slack中的最小值 for(i=1;i<=nx;i++) if(visx[i])lx[i]-=d; for(i=1;i<=ny;i++) if(visy[i])ly[i]+=d; else slack[i]-=d; //修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d } } int res=0; for(i=1;i<=ny;i++) if(linker[i]!=-1) res+=w[linker[i]][i]; return res; } int main(){ while(~scanf("%d",&n)){ nx=ny=n; for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&w[i][j]); int ans=KM(); printf("%d\n",ans); } return 0; }
bfs版KM:复杂度真正为$O(n^3)$ (待补)