【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln...

题解

分治FFT

  设\(f_i\)\(i\)个点组成的无向图个数,\(g_i\)\(i\)个点组成的无向连通图个数

  经过简单的推导(枚举\(1\)所在的连通块大小),有:
\[ f_i=2^{\frac{i(i-1)}{2}} \]

\[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-j}}{(i-j)!} \end{align} \]

  用CDQ分治+FFT优化。

  就是每次先求出\(g_l\cdots g_{mid+1}\),然后卷上\(f_1\cdots f_{len}\),加到\(g_{mid+1}\cdots g_r\)上面去。

  时间复杂度:\(O(n\log^2 n)\)

多项式求逆

\[ \begin{align} f_i&=\sum_{j=1}^n\binom{i-1}{j-1}g_jf_{i-j}\\ \frac{f_i}{(i-1)!}&=\sum_{j=1}^n\frac{g_j}{(j-1)!}\frac{f_{i-j}}{(i-j)!} \end{align} \]

  设
\[ \begin{align} A&=\sum_{i\geq 1}\frac{f_i}{(i-1)!}x^i\\ B&=\sum_{i\geq 1}\frac{g_i}{(i-1)!}x^i\\ C&=\sum_{i\geq 0}\frac{f_i}{i!}x^i \end{align} \]
  所以
\[ \begin{align} A&=B\times C~~~~~~(mod~x^{n+1})\\ B&=A\times C^{-1}~~(mod~x^{n+1}) \end{align} \]
  时间复杂度:\(O(n\log n)\)

多项式求ln

  设
\[ \begin{align} G(x)&=\sum_{i\geq 0}\frac{2^{\binom{i}{2}}}{i!}x^i\\ F(x)&=\sum_{i\geq 0}\frac{f_i}{i!}x^i \end{align} \]

  根据指数生成函数和有标号计数的那套理论,
  由\(0\)个连通块组成的连通图的个数为\(\frac{{F(x)}^0}{0!}\)
  由\(1\)个连通块组成的连通图的个数为\(\frac{{F(x)}^1}{1!}\)
  由\(2\)个连通块组成的连通图的个数为\(\frac{{F(x)}^2}{2!}\)
  \(\vdots\)

  这些加起来就是无向图的个数\(G(x)\)

  所以
\[ \begin{align} G(x)&=\frac{{F(x)}^0}{0!}+\frac{{F(x)}^1}{1!}+\frac{{F(x)}^2}{2!}+\frac{{F(x)}^3}{3!}+\cdots\\ &=\sum_{i\geq 0}\frac{{F(x)}^i}{i!}\\ &=e^{F(x)}\\ F(x)&=\ln(G(x)) \end{align} \]

  直接求ln即可。

  时间复杂度:\(O(n\log n)\)

代码

分治FFT

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
ll p=1004535809;
ll fp(ll a,ll b)
{
    ll s=1;
    while(b)
    {
        if(b&1)
            s=s*a%p;
        a=a*a%p;
        b>>=1;
    }
    return s;
}
ll inv(ll x)
{
    return fp(x,p-2);
}
namespace ntt
{
    ll w1[300010];
    ll w2[300010];
    int rev[300010];
    int n;
    void init(int m)
    {
        n=1;
        while(n<=m)
            n<<=1;
        int i;
        for(i=2;i<=n;i<<=1)
        {
            w1[i]=fp(3,(p-1)/i);
            w2[i]=inv(w1[i]);
        }
        rev[0]=0;
        for(i=1;i<n;i++)
            rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
    }
    void ntt(ll *a,int t)
    {
        int i,j,k;
        ll u,v,w,wn;
        for(i=0;i<n;i++)
            if(rev[i]<i)
                swap(a[i],a[rev[i]]);
        for(i=2;i<=n;i<<=1)
        {
            wn=(t==1?w1[i]:w2[i]);
            for(j=0;j<n;j+=i)
            {
                w=1;
                for(k=j;k<j+i/2;k++)
                {
                    u=a[k];
                    v=a[k+i/2]*w%p;
                    a[k]=(u+v)%p;
                    a[k+i/2]=(u-v+p)%p;
                    w=w*wn%p;
                }
            }
        }
        if(t==-1)
        {
            u=inv(n);
            for(i=0;i<n;i++)
                a[i]=a[i]*u%p;
        }
    }
};
ll a[300010];
ll b[300010];
ll fac[300010];
ll invfac[300010];
ll in[300010];
ll f[300010];
ll g[300010];
void solve(int l,int r)
{
    if(l==r)
    {
        g[l]=(f[l]-fac[l-1]*g[l]%p+p)%p;
        return;
    }
    int mid=(l+r)>>1;
    solve(l,mid);
    int len=r-l+1;
    ntt::init(len);
    int i;
    a[0]=b[0]=0;
    if(l==3&&r==4)
        int x=1;
    if(l==1&&r==4)
        int x=1;
    for(i=1;i<=mid-l+1;i++)
        a[i]=g[i+l-1]*invfac[i+l-1-1]%p;
    for(i=mid-l+1+1;i<ntt::n;i++)
        a[i]=0;
    for(i=1;i<=len;i++)
        b[i]=f[i]*invfac[i]%p;
    for(i=len+1;i<ntt::n;i++)
        b[i]=0;
    ntt::ntt(a,1);
    ntt::ntt(b,1);
    for(i=0;i<ntt::n;i++)
        a[i]=a[i]*b[i]%p;
    ntt::ntt(a,-1);
    for(i=mid+1;i<=r;i++)
        g[i]=(g[i]+a[i-l+1])%p;
    solve(mid+1,r);
//  fprintf(stderr,"%d %d\n",l,r);
}
int main()
{
//  freopen("bzoj3456.in","r",stdin);
//  freopen("bzoj3456.out","w",stdout);
    int n;
    scanf("%d",&n);
    invfac[0]=fac[0]=1;
    int i;
    in[0]=in[1]=1;
    for(i=2;i<=n;i++)
        in[i]=(-(p/i)*in[p%i]%p+p)%p;
    for(i=1;i<=n;i++)
    {
        fac[i]=fac[i-1]*i%p;
        invfac[i]=invfac[i-1]*in[i]%p;
    }
    for(i=1;i<=n;i++)
        f[i]=fp(2,(ll(i)*(i-1)/2)%(p-1));
    memset(g,0,sizeof g);
    solve(1,n);
    printf("%lld\n",g[n]);
    return 0;
}

多项式求逆

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
ll p=1004535809;
ll g=3;
ll fp(ll a,ll b)
{
    ll s=1;
    while(b)
    {
        if(b&1)
            s=s*a%p;
        a=a*a%p;
        b>>=1;
    }
    return s;
}
namespace ntt
{
    ll w1[300010];
    ll w2[300010];
    int rev[300010];
    int n;
    void init(int m)
    {
        n=1;
        while(n<m)
            n<<=1;
        int i;
        for(i=2;i<=n;i++)
        {
            w1[i]=fp(g,(p-1)/i);
            w2[i]=fp(w1[i],p-2);
        }
        rev[0]=0;
        for(i=1;i<n;i++)
            rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
    }
    void ntt(ll *a,int t)
    {
        int i,j,k;
        ll u,v,w,wn;
        for(i=0;i<n;i++)
            if(rev[i]<i)
                swap(a[i],a[rev[i]]);
        for(i=2;i<=n;i<<=1)
        {
            wn=(t==1?w1[i]:w2[i]);
            for(j=0;j<n;j+=i)
            {
                w=1;
                for(k=j;k<j+i/2;k++)
                {
                    u=a[k];
                    v=a[k+i/2]*w%p;
                    a[k]=(u+v)%p;
                    a[k+i/2]=(u-v+p)%p;
                    w=w*wn%p;
                }
            }
        }
        if(t==-1)
        {
            u=fp(n,p-2);    
            for(i=0;i<n;i++)
                a[i]=a[i]*u%p;
        }
    }
    ll x[300010];
    ll y[300010];
    void copy_clear(ll *a,ll *b,int m)
    {
        int i;
        for(i=0;i<m;i++)
            a[i]=b[i];
        for(i=m;i<n;i++)
            a[i]=0;
    }
    void copy(ll *a,ll *b,int m)
    {
        int i;
        for(i=0;i<m;i++)
            a[i]=b[i];
    }
    void inverse(ll *a,ll *b,int m)
    {
        if(m==1)
        {
            b[0]=fp(a[0],p-2);
            return;
        }
        inverse(a,b,m>>1);
        init(2*m);
        copy_clear(x,a,m);
        copy_clear(y,b,m>>1);
        ntt(x,1);
        ntt(y,1);
        int i;
        for(i=0;i<n;i++)
            x[i]=(2*y[i]%p-x[i]*y[i]%p*y[i]%p+p)%p;
        ntt(x,-1);
        copy(b,x,m);
    }
};
ll a[300010];
ll b[300010];
ll c[300010];
ll fac[300010];
int main()
{
//  freopen("bzoj3456.in","r",stdin);
    int n;
    scanf("%d",&n);
    int i;
    fac[0]=1;
    int m=1;
    while(m<=2*n)
        m<<=1;
    for(i=1;i<=n;i++)
        fac[i]=fac[i-1]*i%p;
    a[0]=0;
    for(i=1;i<=n;i++)
        a[i]=fp(2,(ll(i-1)*i/2)%(p-1))*fp(fac[i-1],p-2)%p;
    b[0]=1;
    for(i=1;i<=n;i++)
        b[i]=fp(2,(ll(i-1)*i/2)%(p-1))*fp(fac[i],p-2)%p;
    ntt::inverse(b,c,m>>1);
    for(i=n+1;i<m;i++)
        c[i]=0;
    ntt::init(m);
    ntt::ntt(a,1);
    ntt::ntt(c,1);
    for(i=0;i<m;i++)
        a[i]=a[i]*c[i]%p;
    ntt::ntt(a,-1);
    printf("%d\n",a[n]*fac[n-1]%p);
    return 0;
}

多项式ln

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
    if(a>b)
        swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
    char str[100];
    sprintf(str,"%s.in",s);
    freopen(str,"r",stdin);
    sprintf(str,"%s.out",s);
    freopen(str,"w",stdout);
#endif
}
int rd()
{
    int s=0,c;
    while((c=getchar())<'0'||c>'9');
    do
    {
        s=s*10+c-'0';
    }
    while((c=getchar())>='0'&&c<='9');
    return s;
}
int upmin(int &a,int b)
{
    if(b<a)
    {
        a=b;
        return 1;
    }
    return 0;
}
int upmax(int &a,int b)
{
    if(b>a)
    {
        a=b;
        return 1;
    }
    return 0;
}
const ll p=1004535809;
const ll g=3;
ll fp(ll a,ll b)
{
    ll s=1;
    while(b)
    {
        if(b&1)
            s=s*a%p;
        a=a*a%p;
        b>>=1;
    }
    return s;
}
const int maxn=600000;
ll inv[maxn];
namespace ntt
{
    ll w1[maxn];
    ll w2[maxn];
    int rev[maxn];
    int n;
    void init(int m)
    {
        n=1;
        while(n<m)
            n<<=1;
        int i;
        for(i=2;i<=n;i++)
        {
            w1[i]=fp(g,(p-1)/i);
            w2[i]=fp(w1[i],p-2);
        }
        rev[0]=0;
        for(i=1;i<n;i++)
            rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
    }
    void ntt(ll *a,int t)
    {
        int i,j,k;
        ll u,v,w,wn;
        for(i=0;i<n;i++)
            if(rev[i]<i)
                swap(a[i],a[rev[i]]);
        for(i=2;i<=n;i<<=1)
        {
            wn=(t==1?w1[i]:w2[i]);
            for(j=0;j<n;j+=i)
            {
                w=1;
                for(k=j;k<j+i/2;k++)
                {
                    u=a[k];
                    v=a[k+i/2]*w%p;
                    a[k]=(u+v)%p;
                    a[k+i/2]=(u-v)%p;
                    w=w*wn%p;
                }
            }
        }
        if(t==-1)
        {
            u=fp(n,p-2);    
            for(i=0;i<n;i++)
                a[i]=a[i]*u%p;
        }
    }
    ll x[maxn];
    ll y[maxn];
    void copy_clear(ll *a,ll *b,int m)
    {
        int i;
        for(i=0;i<m;i++)
            a[i]=b[i];
        for(i=m;i<n;i++)
            a[i]=0;
    }
    void copy(ll *a,ll *b,int m)
    {
        int i;
        for(i=0;i<m;i++)
            a[i]=b[i];
    }
    void inverse(ll *a,ll *b,int m)
    {
        if(m==1)
        {
            b[0]=fp(a[0],p-2);
            return;
        }
        inverse(a,b,m>>1);
        init(m<<1);
        copy_clear(x,a,m);
        copy_clear(y,b,m>>1);
        ntt(x,1);
        ntt(y,1);
        int i;
        for(i=0;i<n;i++)
            x[i]=(2*y[i]-x[i]*y[i]%p*y[i])%p;
        ntt(x,-1);
        copy(b,x,m);
    }
    void integrate(ll *a,ll *b,int m)
    {
        int i;
        for(i=0;i<m-1;i++)
            b[i]=(i+1)*a[i+1]%p;
        b[m-1]=0;
    }
    void differential(ll *a,ll *b,int m)
    {
        int i;
        for(i=m-1;i>=1;i--)
            b[i]=a[i-1]*inv[i]%p;
        b[0]=0;
    }
    void ln(ll *a,ll *b,int m)
    {
        static ll c[maxn],d[maxn],e[maxn];
        integrate(a,c,m);
        inverse(a,d,m);
        init(m<<1);
        ntt(c,1);
        ntt(d,1);
        int i;
        for(i=0;i<n;i++)
            e[i]=c[i]*d[i];
        ntt(e,-1);
        differential(e,b,m);
    }
    void exp(ll *a,ll *b,int m)
    {
        if(m==1)
        {
            b[0]=1;
            return;
        }
        exp(a,b,m>>1);
        int i;
        for(i=m>>1;i<m;i++)
            b[i]=0;
        ln(b,y,m);
        init(m<<1);
        copy_clear(x,a,m);
        x[0]++;
        for(i=0;i<m;i++)
            x[i]=(x[i]-y[i])%p;
        copy_clear(y,b,m);
        ntt(x,1);
        ntt(y,1);
        for(i=0;i<n;i++)
            x[i]=x[i]*y[i]%p;
        ntt(x,-1);
        for(i=0;i<m;i++)
            b[i]=x[i];
    }
};
ll a[maxn];
ll b[maxn];
ll fac[maxn];
ll invfac[maxn];
int main()
{
    open("bzoj3456");
    int i,n;
    scanf("%d",&n);
    int m=1;
    while(m<=n+1)
        m<<=1;
    inv[0]=inv[1]=fac[0]=fac[1]=invfac[0]=invfac[1]=1;
    for(i=2;i<m;i++)
    {
        inv[i]=-(p/i)*inv[p%i]%p;
        fac[i]=fac[i-1]*i%p;
        invfac[i]=invfac[i-1]*inv[i]%p;
    }
    for(i=0;i<m;i++)
        a[i]=fp(2,(ll(i)*(i-1)/2)%(p-1))*invfac[i]%p;
    ntt::ln(a,b,m);
    ll ans=(b[n]*fac[n]%p+p)%p;
    printf("%lld\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/ywwyww/p/8511071.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值