BZOJ1002 无向联通图的生成树计数

分析:求无向连通图的生成树个数我们要用到Matrix-Tree定理,这里我只给出具体实现方法,至于怎么证明。。。。我现在也没耐心去看。。有兴趣的同学可以看看 周冬老师的《生成树的计数及其应用》。

好的,现在给出实现方法:点击打开链接,哈哈自己看吧,我是不太想写上来了。

按照算法将行列式构造出来之后我们可以发现这个行列式是有特点的,可以用行列式的展开来得到一个递推关系式(所以说线代还是要好好学滴),D[n]=3*D[n-1]-D[n-2]+2,且这里的数据是足够大的,于是又要写一个烦人的高精度加减了

直接上代码(注:此处的高精度写法只是为了方便乱写的,别做模版哦!):

#include<cstdio>              //无向图的生成树个数  bzoj1002
#include<algorithm>
#include<cstring>
using namespace std;
#define Max 100
int t1[Max], t2[Max], t3[Max];
int ss[Max];
int n;
void print(int *a)
{
	int flag = 0;
	for (int i = 0; i < Max; i++)
		if (a[i] != 0 || flag)
		{
		printf("%d", a[i]);
		flag = 1;
		}
	printf("\n");
}
void add(int *a,int *b,int *c)   //c=a+b
{
	int k = Max - 1, aa, bb = 0;
	while (1)
	{
		aa = a[k] + b[k] + bb;
		c[k--] = aa % 10;
		bb = aa / 10;
		if (k < 0) break;
	}
	return;
}
void sub(int *a, int *b, int *c)   //c=a-b
{
	int k = Max - 1, aa, bb = 0;
	while (1)
	{
		aa = a[k] - b[k] - bb;
		bb = 0;
		if (aa < 0)
		{
			aa += 10;
			bb = 1;
		}
		c[k--] = aa;
		if (k < 0) break;
	}
	return;
}
int main()
{
	int a[105][Max] = { 0 };
	int _size = sizeof(t1);
	scanf("%d", &n); 
	a[1][Max - 1] = 1;
	a[2][Max - 1] = 5;
	ss[Max - 1] = 2;
	for (int i = 3; i <= n; i++)
	{
		
		memset(t1, 0, _size);
		memset(t2, 0, _size);
		memset(t3, 0, _size);
		add(a[i - 1], a[i - 1], t1);
		add(a[i - 1], t1, t2);
		sub(t2, a[i - 2], t3);
		add(t3, ss, a[i]);
	}
	print(a[n]);
	return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值出来,然后将其看作是一个有权值的,问题就转化为了在这个从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值