普里姆算法求最小生成树
1. 求最小生成树就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,
也就是所谓的极小连通子图
算法如下:
1. 设G=(V,E)是联通网,T=(U,D)是最小生成树,V,U是顶点集合,ED是边的集合
2. 若从顶点u开始构筑最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u] = 1
3. 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj
加入集合U中,将边(ui, vj)加入集合D中,标记visited[vj]=1
4. 重复步骤2,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
代码:
public class PulimuMinTree {
public static void main(String[] args) {
//图是否创建成功:
char[] data= new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int verxs = data.length;
//邻接矩阵的关系使用二维数组表示
int[][] weight = new int[][] {
{10000, 5, 7, 10000, 10000, 10000, 2},
{5, 10000, 10000, 9, 10000, 10000, 3},
{7, 10000, 10000, 10000, 8, 10000, 10000},
{10000, 9, 10000, 10000, 10000, 4, 10000},
{10000, 10000, 8, 10000, 10000, 5, 4},
{10000, 10000, 10000, 4, 5, 10000, 6},
{2, 3, 10000, 10000, 4, 6, 10000},
};
//创建MGrap对象
MGraph mGraph = new MGraph(verxs);
MinTree minTree = new MinTree();
minTree.createGraph(mGraph, verxs, data, weight);
minTree.showGraph(mGraph);
//prim算法测试
minTree.prim(mGraph, 0);
}
}
//创建最小生成树
class MinTree {
//创建图的邻接矩阵
/**
*
* @param graph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs,char data[], int[][] weight) {
int i, j;
for (i = 0;i < verxs; i++) {
graph.data[i] = data[i];
for (j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
//显示图的方法
public void showGraph(MGraph graph) {
for (int[] link : graph.weight) {
System.out.println(Arrays.toString(link));
}
}
//编写prim算法,得到最小生成树
/**
*
* @param graph 图
* @param v 表示从图的第几个顶点开始生成
*/
public void prim(MGraph graph, int v) {
//表示已经选择的顶点,默认都为0表示没有访问过
int[] visited = new int[graph.verxs];
//把当前节点标记为已经访问
visited[v] = 1;
int h1 = -1; //记录两个顶点的下标
int h2 = -1;
int minWeight = 10000; //初始化成一个大值,后面遍历过程中会被替换
for (int k = 1; k < graph.verxs; k++) { //因为有grap.verxs个顶点,prim算法结束后有 grap.verxs-1条边
//确定每一次生成的子图和哪个节点的距离最近
for (int i = 0; i < graph.verxs; i++) { //i节点表示已经被访问过的节点
for (int j = 0; j < graph.verxs; j++) { //j表示还没有被访问过的节点
if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
//得到已经访问过的节点与未访问的节点之间最小的边
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//得到一条最小的边
System.out.printf("边<%c, %c>权值:%d\n", graph.data[h1], graph.data[h2], minWeight);
visited[h2] = 1;
//minWeight重新设置成100
minWeight = 10000;
}
}
}
class MGraph{
int verxs; //表示图的节点个数
char[] data; //保存节点数据
int[][] weight; //存放边,邻接矩阵
public MGraph(int verxs) {
this.verxs =verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}