java数据结构之普里姆求最小生成树

 普里姆算法求最小生成树

      1. 求最小生成树就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,
         也就是所谓的极小连通子图
      算法如下:
        1. 设G=(V,E)是联通网,T=(U,D)是最小生成树,V,U是顶点集合,ED是边的集合
        2. 若从顶点u开始构筑最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u] = 1
        3. 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj
            加入集合U中,将边(ui, vj)加入集合D中,标记visited[vj]=1
        4. 重复步骤2,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边

代码:

public class PulimuMinTree {
    public static void main(String[] args) {
        //图是否创建成功:
        char[] data= new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int verxs = data.length;
        //邻接矩阵的关系使用二维数组表示
        int[][] weight = new int[][] {
                {10000,     5,      7,      10000,  10000,  10000,  2},
                {5,         10000,  10000,  9,      10000,  10000,  3},
                {7,         10000,  10000,  10000,  8,      10000,  10000},
                {10000,     9,      10000,  10000,  10000,  4,      10000},
                {10000,     10000,  8,      10000,  10000,  5,      4},
                {10000,     10000,  10000,  4,      5,      10000,  6},
                {2,         3,      10000,  10000,  4,      6,      10000},
        };

        //创建MGrap对象
        MGraph mGraph = new MGraph(verxs);
        MinTree minTree = new MinTree();
        minTree.createGraph(mGraph, verxs, data, weight);
        minTree.showGraph(mGraph);

        //prim算法测试
        minTree.prim(mGraph, 0);
    }
}

//创建最小生成树
class MinTree {
    //创建图的邻接矩阵

    /**
     *
     * @param graph  图对象
     * @param verxs 图对应的顶点个数
     * @param data 图的各个顶点的值
     * @param weight 图的邻接矩阵
     */
    public void createGraph(MGraph graph, int verxs,char data[], int[][] weight) {
        int i, j;
        for (i = 0;i < verxs; i++) {
            graph.data[i] = data[i];
            for (j = 0; j < verxs; j++) {
                graph.weight[i][j] = weight[i][j];
            }
        }
    }

    //显示图的方法
    public void showGraph(MGraph graph) {
        for (int[] link : graph.weight) {
            System.out.println(Arrays.toString(link));
        }
    }

    //编写prim算法,得到最小生成树

    /**
     *
     * @param graph 图
     * @param v 表示从图的第几个顶点开始生成
     */
    public void prim(MGraph graph, int v) {
        //表示已经选择的顶点,默认都为0表示没有访问过
        int[] visited = new int[graph.verxs];

        //把当前节点标记为已经访问
        visited[v] = 1;
        int h1 = -1; //记录两个顶点的下标
        int h2 = -1;
        int minWeight = 10000; //初始化成一个大值,后面遍历过程中会被替换
        for (int k = 1; k < graph.verxs; k++) { //因为有grap.verxs个顶点,prim算法结束后有 grap.verxs-1条边

            //确定每一次生成的子图和哪个节点的距离最近
            for (int i = 0; i < graph.verxs; i++) { //i节点表示已经被访问过的节点
                for (int j = 0; j < graph.verxs; j++) { //j表示还没有被访问过的节点
                    if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
                        //得到已经访问过的节点与未访问的节点之间最小的边
                        minWeight =  graph.weight[i][j];
                        h1 = i;
                        h2 = j;
                    }
                }
            }
            //得到一条最小的边
            System.out.printf("边<%c, %c>权值:%d\n", graph.data[h1], graph.data[h2], minWeight);
            visited[h2] = 1;
            //minWeight重新设置成100
            minWeight = 10000;
        }


    }

}

class MGraph{
    int verxs; //表示图的节点个数
    char[] data; //保存节点数据
    int[][] weight; //存放边,邻接矩阵

    public MGraph(int verxs) {
        this.verxs =verxs;
        data = new char[verxs];
        weight = new int[verxs][verxs];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值