题面
空间只有$64\text{MB}$!!!
题解
(据说正解是毒瘤分块套分块)
按照权值从大到小排序,对所有能够覆盖到它的区间的左端点打个标记
按照值域建一棵主席树就可以了
区间查询最大值,用$m$减去它即可
如何卡空间???
- 用位域将主席树的节点信息压到一个
unsigned long long
中 - 将叶节点改成一个值,节省空间。
(但是还是要开40倍) - 永久化的标记和值压在一起。
最后以大约$63\text{MB}$的空间卡了过去。
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int maxn(2e5 + 10), INT_MAX(1e9);
#define lmax (l == mid ? int(t[rt].lson) : int(t[t[rt].lson].max))
#define rmax (mid + 1 == r ? int(t[rt].rson) : int(t[t[rt].rson].max))
struct node { unsigned long long max : 18, lson : 23, rson : 23; } t[maxn * 40];
int cur, root[maxn], n, m, Q;
std::pair<int, int> a[maxn];
int Insert(int p, int l, int r, int ql, int qr)
{
if(l == r) return p + 1;
int rt = ++cur; t[rt] = t[p];
if(ql <= l && r <= qr) return ++t[rt].max, rt;
int mid = (l + r) >> 1, tag = t[rt].max - std::max(lmax, rmax);
if(ql <= mid) t[rt].lson = Insert(t[p].lson, l, mid, ql, qr);
if(qr > mid) t[rt].rson = Insert(t[p].rson, mid + 1, r, ql, qr);
t[rt].max = std::max(lmax, rmax) + tag; return rt;
}
int query(int rt, int l, int r, int ql, int qr)
{
if(l == r) return rt;
if(ql <= l && r <= qr) return t[rt].max;
int mid = (l + r) >> 1, ans = 0, tag = t[rt].max - std::max(lmax, rmax);
if(ql <= mid) ans = std::max(ans, query(t[rt].lson, l, mid, ql, qr));
if(qr > mid) ans = std::max(ans, query(t[rt].rson, mid + 1, r, ql, qr));
return ans + tag;
}
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
n = read(), m = read();
for(RG int i = 1; i <= n; i++) a[i] = std::make_pair(-read(), i);
std::sort(a + 1, a + n + 1);
for(RG int i = 1; i <= n; i++)
{
int ql = std::max(1, a[i].second - m + 1);
int qr = std::min(a[i].second, n - m + 1);
root[i] = Insert(root[i - 1], 1, n - m + 1, ql, qr);
}
Q = read(); int ans = 0;
while(Q--)
{
int l = read(), r = read(), x = read() ^ ans;
int id = std::upper_bound(a + 1, a + n + 1,
std::make_pair(-x, INT_MAX)) - a - 1;
printf("%d\n", ans = m - query(root[id], 1, n - m + 1, l, r));
}
return 0;
}