Github_link_from:https://github.com/lawlite19/MachineLearning_Python 机器学习算法Python实现 目录 机器学习算法Python实现 一、线性回归 1、代价函数2、梯度下降算法3、均值归一化4、最终运行结果5、使用scikit-learn库中的线性模型实现二、逻辑回归 1、代价函数2、梯度3、正则化4、S型函数(即)5、映射为多项式6、使用的优化方法7、运行结果8、使用scikit-learn库中的逻辑回归模型实现逻辑回归_手写数字识别_OneVsAll 1、随机显示100个数字2、OneVsAll3、手写数字识别4、预测5、运行结果6、使用scikit-learn库中的逻辑回归模型实现三、BP神经网络 1、神经网络model2、代价函数3、正则化4、反向传播BP5、BP可以求梯度的原因6、梯度检查7、权重的随机初始化8、预测9、输出结果四、SVM支持向量机 1、代价函数2、Large Margin3、SVM Kernel(核函数)4、使用中的模型代码5、运行结果五、K-Means聚类算法 1、聚类过程2、目标函数3、聚类中心的选择4、聚类个数K的选择5、应用——图片压缩6、使用scikit-learn库中的线性模型实现聚类7、运行结果六、PCA主成分分析(降维) 1、用处2、2D-->1D,nD-->kD3、主成分分析PCA与线性回归的区别4、PCA降维过程5、数据恢复6、主成分个数的选择(即要降的维度)7、使用建议8、运行结果9、使用scikit-learn库中的PCA实现降维七、异常检测 Anomaly Detection 1、高斯分布(正态分布)2、异常检测算法3、评价的好坏,以及的选取4、选择使用什么样的feature(单元高斯分布)5、多元高斯分布6、单元和多元高斯分布特点7、程序运行结果 转载于:https://www.cnblogs.com/0405mxh/p/11603018.html