题意:给你一系列个w,s。要你找到最长的n使得
W[m[1]] < W[m[2]] < ... < W[m[n]]
and
S[m[1]] > S[m[2]] > ... > S[m[n]]
即在这n个w,s中满足w[i]<w[j]&&s[i]>s[j],要求:体重严格递增,速度严格递减,原始顺序不定
首先将s从大到小排序,即顺数固定后转化为最长上升子序列问题.
案例:
6008 1300 6000 2100 500 2000 1000 4000 1100 3000 6000 2000 8000 1400 6000 1200 2000 1900
Sample Output
4 4 5 9 7
1000 4000
1100 3000
2000 1900
8000 1400
#include<cstdio>
#include<stdlib.h>
#include<string.h>
#include<string>
#include<map>
#include<cmath>
#include<iostream>
#include <queue>
#include <stack>
#include<algorithm>
#include<set>
using namespace std;
#define INF 999999999
#define eps 1e-4
#define LL __int64
#define maxn 26
#define mol 1000000007
#define N 505
#define M 50010
struct node
{
int v,s,num;
}p[1105];
int pre[1105];//路径保存pre[i]表示 i 的前一个数
int cmp(node a,node b)
{
return a.s>b.s;
}
void out(int k)//递归输出
{
if(pre[k]==-1)
{
printf("%d\n",k);
return;
}
out(pre[k]);
printf("%d\n",k);
}
int main()
{
int n=1,dp[1105];
while(~scanf("%d%d",&p[n].v,&p[n].s))
{
p[n].num=n;
n++;
}
sort(p+1,p+n+1,cmp);
for(int i=1;i<n;i++)
dp[i]=0,pre[i]=-1;
dp[1]=1;
pre[p[1].num]=-1;
int ans=1,k=1;
for(int i=2;i<n;i++)
{
int maxx=0,index=-1;
for(int j=1;j<i;j++)
{
if(p[j].s>p[i].s&&p[j].v<p[i].v)
{
if(dp[j]>maxx)
{
maxx=dp[j];
index=p[j].num;
}
}
}
dp[i]=maxx+1;
pre[p[i].num]=index;
if(dp[i]>ans)
{
ans=dp[i];
k=p[i].num;
}
}
printf("%d\n",ans);
out(k);
return 0;
}
/*
6008 1300
6000 2100
500 2000
1000 4000
1100 3000
6000 2000
8000 1400
6000 1200
2000 1900
*/