[Swift]LeetCode1091. 二进制矩阵中的最短路径 | Shortest Path in Binary Matrix

★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/11014400.html 
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

In an N by N square grid, each cell is either empty (0) or blocked (1).

clear path from top-left to bottom-right has length k if and only if it is composed of cells C_1, C_2, ..., C_k such that:

  • Adjacent cells C_i and C_{i+1} are connected 8-directionally (ie., they are different and share an edge or corner)
  • C_1 is at location (0, 0) (ie. has value grid[0][0])
  • C_k is at location (N-1, N-1) (ie. has value grid[N-1][N-1])
  • If C_i is located at (r, c), then grid[r][c] is empty (ie. grid[r][c] == 0).

Return the length of the shortest such clear path from top-left to bottom-right.  If such a path does not exist, return -1. 

Example 1:

Input: [[0,1],[1,0]]
Output: 2

Example 2:

Input: [[0,0,0],[1,1,0],[1,1,0]]
Output: 4 

Note:

  1. 1 <= grid.length == grid[0].length <= 100
  2. grid[i][j] is 0 or 1

在一个 N × N 的方形网格中,每个单元格有两种状态:空(0)或者阻塞(1)。

一条从左上角到右下角、长度为 k 的畅通路径,由满足下述条件的单元格 C_1, C_2, ..., C_k 组成:

  • 相邻单元格 C_i 和 C_{i+1} 在八个方向之一上连通(此时,C_i 和 C_{i+1} 不同且共享边或角)
  • C_1 位于 (0, 0)(即,值为 grid[0][0]
  • C_k 位于 (N-1, N-1)(即,值为 grid[N-1][N-1]
  • 如果 C_i 位于 (r, c),则 grid[r][c] 为空(即,grid[r][c] == 0

返回这条从左上角到右下角的最短畅通路径的长度。如果不存在这样的路径,返回 -1 。

 

示例 1:

输入:[[0,1],[1,0]]

输出:2

 

 
 

示例 2:

输入:[[0,0,0],[1,1,0],[1,1,0]]

输出:4

提示:

  1. 1 <= grid.length == grid[0].length <= 100
  2. grid[i][j] 为 0 或 1

Runtime: 516 ms
Memory Usage: 21 MB
 1 class Solution {
 2     let dir:[[Int]] = [[0,1],[0,-1],[1,0],[-1,0],[1,-1],[-1,1],[-1,-1],[1,1]]
 3     func shortestPathBinaryMatrix(_ grid: [[Int]]) -> Int {
 4         let m:Int = grid.count
 5         let n:Int = grid[0].count
 6         
 7         if grid[0][0]==1 || grid[m-1][n-1]==1
 8         {
 9             return -1
10         }
11         
12         var visited:[[Bool]] = [[Bool]](repeating:[Bool](repeating:false,count:n),count:m)
13         visited[0][0] = true
14         var queue:[[Int]] = [[Int]]()
15         queue.append([0,0])
16         var ans:Int = 0
17         while(!queue.isEmpty)
18         {
19             let size:Int = queue.count
20             for _ in 0..<size
21             {
22                 var pop:[Int] = queue.removeFirst()
23                 if pop[0] == m-1 && pop[1] == n-1
24                 {
25                     return ans + 1
26                 }
27                 for k in 0..<8
28                 {
29                     let nextX:Int = dir[k][0]+pop[0]
30                     let nextY:Int = dir[k][1]+pop[1]
31                     if nextX>=0 && nextX<m && nextY>=0 && nextY<n && !visited[nextX][nextY] && grid[nextX][nextY]==0
32                     {
33                         queue.append([nextX,nextY])
34                         visited[nextX][nextY] = true
35                     }
36                 }
37             }
38             ans += 1
39         }
40         return -1
41     }
42 }

612ms

 

 1 class Solution {
 2     func shortestPathBinaryMatrix(_ grid: [[Int]]) -> Int {
 3         guard grid.count > 0 && grid[0].count > 0 else { return -1 }
 4         guard grid[0][0] == 0 else { return -1 }
 5         let R = grid.count
 6         let C = grid[0].count
 7         let directions = [(0, 1), (1, 0), (0, -1), (-1, 0), (-1, 1), (1, -1), (1, 1), (-1, -1)]
 8         var isVisited = [[Bool]](repeating: [Bool](repeating: false, count: grid[0].count), count: grid.count)
 9         var queue = [(0, 0)]
10         isVisited[0][0] = true
11         var steps = 1
12         while queue.count > 0 {
13             
14             let size = queue.count
15             steps += 1
16             for i in 0..<size {
17                 let curr = queue.removeFirst()
18                 for direct in directions {
19                     let nextR = curr.0 + direct.0
20                     let nextC = curr.1 + direct.1
21                     // print((nextR, nextC))
22                     guard nextR < grid.count && nextR >= 0 && nextC < grid[0].count && nextC >= 0 && 
23                          !isVisited[nextR][nextC] && grid[nextR][nextC] == 0 else {
24                         continue
25                     }
26                     
27                     // print((R, C))
28                     if nextR == R-1 && nextC == C-1 { return steps }
29                     queue.append((nextR, nextC))
30                     isVisited[nextR][nextC] = true;
31                 }
32             }
33         }
34         return -1
35     }
36 }

868ms

 1 class Solution {
 2     func shortestPathBinaryMatrix(_ grid: [[Int]]) -> Int {
 3         guard !grid.isEmpty, !grid[0].isEmpty else { return -1 }
 4         guard grid[0][0] == 0, grid[grid.count - 1][grid.count - 1] == 0 else { return -1 }
 5         var grid = grid
 6         
 7         let visiting = Set<[Int]>([[0, 0]])
 8         return bfs(&grid, visiting: visiting, level: 1)
 9     }
10     
11     private func bfs(_ grid: inout [[Int]], visiting: Set<[Int]>, level: Int) -> Int {
12         guard grid[grid.count - 1][grid.count - 1] == 0 else { return level }
13         
14         let dirs: [[Int]] = [
15             [-1, -1],
16             [-1,  0],
17             [-1,  1],
18             [ 0,  1],
19             [ 0, -1],
20             [ 1, -1],
21             [ 1,  0],
22             [ 1,  1]
23         ]
24         var nextVisiting = Set<[Int]>()
25         for p in visiting {
26             dirs
27             .map { [p[0] + $0[0], p[1] + $0[1]] }
28             .forEach { np in
29                 if  np[0] >= 0, 
30                     np[1] >= 0, 
31                     np[0] < grid.count, 
32                     np[1] < grid.count, 
33                     grid[np[0]][np[1]] == 0 {
34                     nextVisiting.insert(np)
35                     grid[np[0]][np[1]] = 1
36                 }
37             }
38         }
39         guard !nextVisiting.isEmpty else { return -1 }
40         return bfs(&grid, visiting: nextVisiting, level: level + 1)
41     }
42 }

 

转载于:https://www.cnblogs.com/strengthen/p/11014400.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值