几何结构因子(Geometrical structure factor)和原子形状因子(atomic form factor)

1.Monatamic Lattice

根据X衍射中,入射光和散射光的光程差:${\bf{r}}\cdot\left({\bf{k-k'}}\right)$,振幅取决于$e^{i\bf{K}\cdot{d_j}}$

X射线衍射的Laue condition: $\bf{K=G_h}$

可以定义简单的几何结构因子(Identical basis):

\[ S_{G_h}=\sum_j  e^{-i\bf{G_h}\cdot{d_j}}  \]

 

2.Polyatomic Lattice

取原子或离子实的中心为$\stackrel{\rightarrow}{r}=0$,与某一倒格矢相联系的原子形状因子为:

\[ f_j({\bf{G_h}})=\int n_j({\bf{r}})e^{-i{\bf{G_h}}\cdot{\bf{r}}} \,dr \]

其中,下角标$j$代表了空间某一种点,该点处有原子或离子实。若对应的是离子实,${\bf{r}}$表示离子实所包含的电子相对于离子实中心的位置坐标。因此,此处针对的是离子实中包含的所有电子的求和,$n_j({\bf{r}})$的物理意义是$\stackrel{\rightarrow}{r}$处的电子浓度;$f_j({\bf{G_h}})$整体刻画了$\stackrel{\rightarrow}{r}$处对X光的散射性质;

晶体的几何结构因子被定义为:

\[ S_{G_h}=\sum_j {f_j({\bf{r}})e^{-i\bf{G_h}\cdot{d_j}} } \]

衍射光的强度与$|S_{G_h}|^2$有关,因此衍射强度此时不仅与原子的相对排列有关,还与原子的种类($j$为种类序号)的有关。

例1: 

以体心立方布拉维格子为例,可将其看成简单立方格子加上基元条件(两种基元)。换句话说,体心立方格子是由两种简单立方格子堆积交错堆叠而成。虽然这两种简单立方格子的倒格矢原子形状因子相同,但是$d_j$不同。

简单立方格子对应的倒格矢为

\[ {\bf{G_h}}=h_1{\bf{b_1}}+h_2{\bf{b_2}}+h_3{\bf{b_3}}=\frac{2\pi}{a}(h_1{\bf{x}}+h_2{\bf{y}}+h_3{\bf{z}}) \]

体心立方格子基元含有两种基元:

\[{\bf{d_1}}=0,{\bf{d_2}}=\frac{1}{2}a({\bf{x}}+{\bf{y}}+{\bf{z}}) \]

因此可得到:

\[  S_{G_h}=f\left[1+e^{i\pi(h_1+h_2+h_3)}\right]=f\left[1+(-1)^{h_1+h_2+h_3}\right] \]

\[ S_{G_h}=\begin{cases}0& \text{$h_1+h_2+h_3=odd$}\\2f& \text{$h_1+h_2+h_3=even$}\end{cases} \]

 

例2:

 Consider a lattice with an n-ion basis. Suppose that the ith ion in the basis, when translated to ${\bf{r}}=0$, can be regarded as composed of $m_i$ point particles of charge $-Z_{ij}e$, located at position $\bf{b_{ij}}$, $j=1,2,...,m_i$.

(a) Show that the atomic form factor $f_i$ is given by 

\[  f_i=\sum_{j=1}^{m_i} Z_{ij}e^{-i\bf{K\cdot{b_{ij}}}}  (1) \]

(b) Show that the total structure factor $S_{G_h}=\sum_{j} {f_j({\bf{r}})e^{-i\bf{G_h}\cdot{d_j}} }$ implied by (1) is identical to the struture factor one would have found if the lattice were equivalently decribed as having a basis of $m_1+m_2+...+m_n$ point ions.

Solution:

 

(a) 第$i$个离子的形状因子的物理含义是第$i$个离子内各个带点的质点的散射波叠加后对散射波振幅的贡献。第$i$个离子的形状因子为:

\[ f_i=\int n_i({\bf{r}})e^{-i{\bf{G_h}}\cdot{\bf{r}}} \,dr  (2)\]

  ${\bf{r}}$表示离子实所包含的带电质点相对于离子实中心的位置坐标     

  将积分改为求和,得到:

\[  f_i=\sum_{j=1}^{m_i} Z_{ij}e^{-i\bf{K\cdot{b_{ij}}}}  (3)\]

  $m_i$表示第$i$个离子实含有的带点质点数目

(b) 基元由$n$个离子组成,结构因子:

\[ S_{G_h}=\sum_{i=1}^{n} {f_ie^{-i\bf{G_h}\cdot{r_i}} }  (4)\]

  其中$f_i$是基元中第$i$个离子的形状因子

  将$f_i$代入结构因子,得到

\[ S_{G_h}=\sum_{i=1}^{n} {\sum_{j=1}^{m_i} Z_{ij}e^{-i\bf{G_h}\cdot{b_{ij}+r_i} }}  (5)\]

  换个角度,把点阵直接看为带点质点的组成的基元,其结构因子为:

\[ S_{G_h}=\sum_k {f_ke^{-i\bf{G_h}\cdot{r_k}} }  (6)\]

  对于每个带点质点,均有$f_k=Z_{ij}$,而$\bf{r_k=r_i+b_{ij}}$, 对所有带点质点求和,可再次得到

\[ S_{G_h}=\sum_{i=1}^{n} {\sum_{j=1}^{m_i} Z_{ij}e^{-i\bf{G_h}\cdot{b_{ij}+r_i} }}  (7)\]

2017-04-30

 

转载于:https://www.cnblogs.com/xumh/p/6790138.html

圆锥曲线是平面几何中非常重要的一类曲线,由于其独特的特性和广泛的应用而受到广大数学爱好者的喜爱和研究。 圆锥曲线包括椭圆、双曲线和抛物线三种曲线。它们的共同特点是由一个固定点(焦点)和一个动点(直线上的移动点)经过构造而得。椭圆的构造方法是通过一个固定点P和到两个不在同一直线上的定点F1和F2的距离之和等于常数的点集。而双曲线则是通过固定点P和到两个不在同一直线上的定点F1和F2的距离之差等于常数的点集。最后,抛物线则是通过一个固定点P和到一个定直线的距离等于常数的点集。 这些曲线具有许多重要的几何性质。首先,它们都具有对称性。对于椭圆和双曲线,它们的主轴是对称轴,并且离焦点最远的两个点称为椭圆和双曲线的顶点。而抛物线则以其焦点为对称中心。其次,它们都有与焦点和直线之间的距离相关的重要定理。例如,对于椭圆和双曲线,焦点到曲线上任意一点的距离和到直线的距离之差等于常数。而对于抛物线,焦点到曲线上任意一点的距离等于到对称轴的距离的平方。 此外,这些曲线还具有重要的切线性质。对于椭圆和双曲线,切线与焦点到曲线的距离的斜率之积等于常数。而对于抛物线,切线与焦点到曲线的距离的斜率之和等于常数。 除了这些基本性质外,圆锥曲线还有许多其他重要的性质和应用,如焦半径定理、离心率的概念以及它们在物理学、天体力学和众多工程领域中的广泛应用等等。 总而言之,圆锥曲线在数学和应用数学中占据着非常重要的地位,它们具有许多独特的几何性质,展示出了数学美的魅力,并在许多领域发挥着重要的作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值