Towards a topological-geometrical theory of group equivariant non-expansive operators for data analy

摘要:

这篇论文的主要目的是为机器学习领域中的群等方差提供一个通用的数学框架;这个数学框架是建立在持久同源性与群行为理论联合的基础之上;我们将群组转换的函数空间映射定义为群组等变方差非扩张算子(GENEOs);我们研究了拓扑与GENEOs的度量属性去评估它的近似能力(拟合能力)和对通用策略设置一些规则去初始化和组合算子;我们从对函数空间、等方差群组和一系列的非扩张算子定义了伪度量(epseudo-metrics);在函数空间是连续凸函数的假设下,我们证明了GENEOs空间也是连续凸的;从机器学习角度而言,GENEOS提供了最基本的保障;我们在MNIST与fashion-MNIST数据集展示了一些案例;通过考虑等间距等方差非扩张算子,我们描述了一个简单的策略去选择和抽样算子,和显示了如何去选择和抽样算子去执行分类度量学习与CNN核的有效初始化;

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
强噪声的理想时频表示方法主要是为了在频域和时域上准确地表示出噪声信号。在处理强噪声信号时,我们希望减小噪声对信号的影响,从而更好地分析和提取信号的特征。 首先,为了处理强噪声信号,可以考虑使用适当的滤波方法。例如,我们可以使用带通滤波器来去除噪声信号中的不必要的低频和高频成分,从而保留信号的主要特征。此外,还可以采用自适应滤波器来根据噪声信号的特性自动调整滤波参数,以更好地去除噪声。 其次,为了获得理想的时频表示,可以考虑使用一些先进的时频分析方法,如短时傅里叶变换(STFT)、连续小波变换(CWT)或多尺度分析方法(如小波包变换)。这些方法可以将信号在时域和频域上进行局部化处理,从而更好地反映信号的瞬时特性和频谱特性。 另外,为了进一步减小噪声对时频表示的影响,可以考虑使用一些去噪技术。例如,小波阈值去噪是一种常用的方法,它可以根据信号的小波系数大小来判断是否为噪声,从而去除噪声成分。此外,还可以使用基于机器学习的方法来训练和应用噪声模型,从而更准确地估计和去除噪声。 综上所述,针对强噪声的理想时频表示方法可以包括滤波、时频分析和去噪等步骤。通过有效地组合这些方法,我们可以更准确地分析和提取信号的特征,从而更好地理解和利用强噪声信号。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值