四边形内接于圆定理_「每日一题98」平行四边形内接于圆 看似简单 能说清楚 不简单...

d9201be8afa4372bbcee8950604c5984.png

98.如图1,平行四边形MNPQ的四个顶点内接于⊙O,MN=4,NP=5,R是NP边上的一个动点,QS⊥MR,垂足为点S,若MR=NP,

(1)求四边形PQRS的周长;

(2)求tan∠SPR的值.

e14c39d09a67d10609680e5775caf270.png

图1

分析

平行四边形MNPQ内接于⊙O=>矩形MNPQ

由已知=>Rt△MNR≌Rt△QSM=>勾股定理得NR=3=>求解周长

作ST⊥NP=>相似三角形=>求ST和TP=>tan∠SPR的值

实际操作

MNPQ是⊙O的内接四边形=>∠QMN+∠NPQ=180°

平行四边形MNPQ=>∠QMN=∠NPQ

所以∠QMN=∠NPQ=90°=>矩形MNPQ

(1)平行四边形MNPQ=>MQ∥NP

=>∠QMS=∠MRN,若MR=NP=MQ=5

=>Rt△MNR≌Rt△QSM

在Rt△MNR中,由勾股定理得NR=3,

所以NR=MS=3,MN=SQ=PQ=4,SR=RP=5-3=2,

四边形PQRS的周长=4+4+2+2=12;

(2)如图2,作ST⊥NP,垂足为T.

3507e2dec74094d3528283fbeac83eb9.png

图2

ST∥MN=>SR:RM=ST:MN=TR:NR

=>2:5=ST:4=TR:3

=>ST=8/5,TR=6/5,TP=16/5

=>tan∠SPR=ST:TP=1/2

本题知识点:圆内接平行四边形是矩形;圆内接四边形的性质;平行四边形的性质;平行线截线段成比例;相似三角形判定及性质;全等判定及性质;勾股定理;三角函数等。


关注“中考数学当百荟” 点击“了解更多”

回手一赞,美言千万。举手之劳,涌泉相报。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值