bzoj2440 [中山市选2011]完全平方数

2440: [中山市选2011]完全平方数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 4458  Solved: 2153
[Submit][Status][Discuss]

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。 

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

 

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50

分析:涉及到求第k个,常见的套路是二分,求出[1,x]有多少个数是无平方因子数.直接统计效率实在是太低,但是涉及到倍数的计数题往往都可以用容斥原理来做,即用区间的数的个数-一个质数的平方的倍数的个数+2个质数的乘积的平方的倍数-3个质数的乘积的平方的倍数......很快可以发现这个-和+是有规律的,正好就相当于莫比乌斯函数μ(x).只需要看一个数对区间的贡献是多少,最后累加起来.那么枚举[1,sqrt(x)]的数,对于每一个数y,通过莫比乌斯函数就能够知道它对区间的贡献到底是正的还是负的.再把y平方一下,看有多少个数是y^2的倍数,就能进行容斥原理了.
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

typedef long long ll;
ll T, n, prime[50010], tot, mo[50010], vis[50010], ans;

void init()
{
    mo[1] = 1;
    for (ll i = 2; i <= 50000; i++)
    {
        if (!vis[i])
        {
            prime[++tot] = i;
            mo[i] = -1;
        }
        for (ll j = 1; j <= tot; j++)
        {
            ll t = prime[j] * i;
            if (t > 50000)
                break;
            vis[t] = 1;
            if (i % prime[j] == 0)
            {
                mo[t] = 0;
                break;
            }
            mo[t] = -mo[i];
        }
    }
}

ll check(ll x)
{
    ll res = 0;
    for (ll i = 1; i <= sqrt(x); i++)
        res += mo[i] * (x / (i * i));
    return res;
}

int main()
{
    init();
    scanf("%lld", &T);
    while (T--)
    {
        ll l = 1, r = 1644934081, ans = 1;
        scanf("%lld", &n);
        while (l <= r)
        {
            ll mid = (l + r) >> 1;
            if (check(mid) >= n)
            {
                ans = mid;
                r = mid - 1;
            }
            else
                l = mid + 1;
        }
        printf("%lld\n", ans);
    }

    return 0;
}

 

转载于:https://www.cnblogs.com/zbtrs/p/7921128.html

引用:中山市是一个不设区的地级市,它包含了6个街道和18个镇。其中,有石岐街道、东区街道、西区街道、南区街道、五桂山街道、火炬开发区街道等。 引用:根据描述,这个游戏是一个给定了起始位置和目标位置的移动游戏。在一个n * m的棋盘上,棋盘上有两种不同的格子,分别用#和@表示。小明每次可以向上、下、左、右四个方向移动一格,如果移动到相同类型的格子上,费用为0,否则费用为1。问题要求计算从起始位置移动到目标位置所需的最小花费。输入包含多组数据,每组数据的格式为:第一行是两个整数n和m,表示棋盘的行数和列数;接下来的n行每行包含m个格子;最后一行是四个整数x1、y1、x2、y2,表示起始位置和目标位置的坐标。当输入的n和m都为0时,表示输入结束。输出每组数据的最小花费,每组数据独占一行。 引用:根据样例输入和输出,可以看出其中一个示例的输入是2行2列的棋盘,棋盘上有两种格子@@和@#;起始位置是(0, 1),目标位置是(1, 0)。根据游戏规则,需要计算从起始位置到目标位置的最小花费。输出为2。 根据以上信息,中山市和游戏之间没有直接关联。请问你是想了解中山市举情况吗?如果是的话,请提供更多的相关信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [不设区的地级市之中山市geoJSon可直接使用](https://download.csdn.net/download/weixin_36323996/12833075)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【中山市2009】【BZOJ2464】小明的游戏](https://blog.csdn.net/CreationAugust/article/details/48679593)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值