PTA --- 时间复杂度 选择题

本文探讨了算法的时间复杂度和空间复杂度分析,并通过具体例子解释了不同算法的增长速度比较,如2^N与N^N、N^2logN与NlogN^2等,并涉及了素数判断算法的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1-1

2NNN具有相同的增长速度。 (2分)

T         F
作者: DS课程组
单位: 浙江大学
1-2

(NlogN)/1000O(N)的。 (1分)

T         F
作者: DS课程组
单位: 浙江大学
1-3

N2logNNlogN2具有相同的增长速度。 (2分)

T         F
作者: DS课程组
单位: 浙江大学
1-4

算法分析的两个主要方面是时间复杂度和空间复杂度的分析。 (1分)

T         F
作者: DS课程组
单位: 浙江大学
1-5

在任何情况下,时间复杂度为O(n2) 的算法比时间复杂度为O(n*logn)的算法所花费的时间都长。 (1分)

T         F
作者: 干红华
单位: 浙江大学
1-6

对于某些算法,随着问题规模的扩大,所花的时间不一定单调增加。 (1分)

T         F
作者: 干红华
单位: 浙江大学

1-7

100logNO(N)的。 (1分)

T         F

2-4

要判断一个整数N>10)是否素数,我们需要检查3到N之间是否存在奇数可以整除N。则这个算法的时间复杂度是:(2分)

  1. O(NlogN)
  2. O(N/2)
  3. O(N)
  4. O(0.5logN)

转载于:https://www.cnblogs.com/lvstone-own/p/9630460.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值