PTA数据结构与算法-第一章——褚论

本文深入探讨了数据结构的基本概念及其与算法的关系,涵盖了从线性表到图的多种数据结构,并解析了排序和检索等核心算法。通过判断题、单选题及程序填空题等形式,帮助读者巩固知识点,提升解决实际问题的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


第一章——褚论

第二章——线性表

第三章——栈与队列

第四章——字符串

第五章——树与二叉树

第六章——图

第七章——排序

第八章——检索


判断题


  • (neuDS)数据的物理结构是指数据在计算机中的实际存储形式。
    T

  • (neuDS)数据的物理结构是指数据在计算机中的实际存储形式。
    F

  • 2N 和NN 具有相同的增长速度。
    F

  • 算法分析的两个主要方面是时间复杂度和空间复杂度的分析。
    T

  • 数据的逻辑结构说明数据元素之间的顺序关系,它依赖于计算机的存储结构。
    F 逻辑结构可用不同的存储结构实现,此处要区分逻辑结构与物理结构的区别。

  • 算法必须有输出,但可以没有输入。
    T

  • 算法独立于具体的程序设计语言,与具体的计算机无关。
    T

  • 用渐进表示法分析算法复杂度的增长趋势。
    T

  • O(n​2 ),O(1+2+···+n) 对应的算法时间复杂度相同。
    T

  • 数据的逻辑结构与数据元素本身的内容和形式无关。
    T

  • 数据项是数据的最小单位。
    T

  • 数据的逻辑结构是指数据的各数据项之间的逻辑关系。
    F 逻辑结构就是数据元素间的逻辑关系,而不是数据元素内部的数据项之间的关系。

  • 数据结构概念包括数据之间的逻辑结构、数据在计算机中的存储方式和数据的运算三个方面。
    T

  • 数据结构的抽象操作的定义与具体实现有关。
    F抽象本来就是不考虑具体的实现细节,只是对事物的本质和特征的描述。

  • logN2 is O(N).
    T

  • n0.01​​ is O(logn).
    F

单选题

  • 以下关于数据结构的说法中正确的是____。
    A数据结构的逻辑结构独立于其存储结构
    B数据结构的存储结构独立于该数据结构的逻辑结构
    C数据结构的逻辑结构唯一地决定了该数据结构的存储结构
    D数据结构仅由其逻辑结构和存储结构决定

  • 给定程序时间复杂度的递推公式:T(1)=1,T(N)=2T(N/2)+N。则程序时间复杂度是:
    O(logN)
    O(N)
    O(NlogN)
    O(N2)

  • 下列函数中,哪个函数具有最慢的增长速度:
    N​1.5
    ​​NlogN​2
    ​​N2​​logN
    N(logN)​2

  • 执行下面程序段时,执行S语句的频度为()。
for(int i=0;i<n;i++)
for(int j=1;j<=i;j++)
     S;

n2
​n2 /2
n(n+1)
n(n+1)/2
这道题的标准答案应该是1+2+3+……+n-1=n(n-1)/2。
但实际考试做题选择最接近的即可。


  • 在存储数据时,通常不仅要存储各数据元素的值,而且还要存储()。
    数据的处理方法
    数据元素的类型
    数据元素之间的关系
    数据的存储方法

  • 某算法的时间复杂度是O(n​2​​ ),表明该算法的( )。
    问题规模是n​2
    ​​问题规模与n​2成正比
    执行时间等于n​2
    ​执行时间与n​2成正比

  • 数据在计算机内存中的表示是指() 。
    数据的存储结构
    数据结构
    数据的逻辑结构
    数据元素之间的关系

  • 设计一个好的算法应该满足正确性、可读性、健壮性和高效性等要求。

  • 下面代码段的时间复杂度是()。
x=0;  
for( i=1; i<n; i++ )  
    for ( j=1; j<=n-i; j++ )  
        x++;

O(n)
O(n​2)
O(n​3​​)
O(2​n​​)
在这里插入图片描述

所以时间复杂度是O(n2)。


  • 下列代码
if ( A > B ) {
    for ( i=0; i<N*N/100; i++ )
        for ( j=N*N; j>i; j-- )
            A += B;
}
else {
    for ( i=0; i<N*2; i++ )
        for ( j=N*3; j>i; j-- )
            A += B;
}

的时间复杂度是:O(N4
if语句的时间复杂度是O(N4),else语句中的时间复杂度是O(N2),这里一定要注意是N2,N3,而不是二次方三次方。


程序填空题

  • 测量算法的运行时间
    下面的程序测量某个函数 F 的运行时间。
    请在空白处填写适当内容,完成该程序。
#include <stdio.h>
#include <
time.h
>

int F(int x);

int main()
{
    clock_t t1, t2;
    double t;
    int x, y;

    printf("x = ? ");
    scanf("%d", &x);

    t1 = 
clock()
;

    y = F(x);

    t2 = 
clock()
;

    t = 
(t2 - t1) / (double)CLOCKS_PER_SEC
;

    printf("y = %d\n", y);
    printf("It took %.2f second(s)\n", t);

    return 0;
}

int F(int x)
{
    ......
}

运行效果示例
x = ? 25
y = 3712
It took 1.25 second(s)
注:图中数据仅为样例,实际结果可能不同。

### PTA 数据结构算法 6-2 题目解析 针对PTA平台上编号为6-2的数据结构算法题目,虽然具体题干未在此提供,但从以往经验以及相似类型的练习来看,此类题目通常涉及基础数据结构的应用或是经典算法的实现。 #### 基于邻接表的图操作实践 对于涉及到图论的操作,如创建、遍历等基本功能,可以借鉴邻接表这种高效的存储形式[^2]。相较于传统的邻接矩阵表示方法,邻接表能够有效节省空间并提高访问效率,尤其是在稀疏图的情况下表现尤为突出。下面给出一段简单的Python代码用于构建基于链表的无向图: ```python class Node: def __init__(self, vertex=None, next=None): self.vertex = vertex self.next = next def add_edge(adj_list, u, v): node_u_to_v = Node(v, adj_list[u]) adj_list[u] = node_u_to_v node_v_to_u = Node(u, adj_list[v]) adj_list[v] = node_v_to_u ``` 这段程序展示了如何利用节点类`Node`定义边的关系,并通过`add_edge()`函数完成两个顶点之间的连接关系设置。 #### 应用场景举例:括号匹配验证 另一个可能的方向是关于括号匹配的问题,这属于典型的栈应用案例之一[^3]。为了检验一组括号序列是否合法闭合,可以通过入栈出栈的方式来进行判定。每当遇到左括号时将其压入堆栈;当碰到右括号,则尝试弹出最近一次存入的左括号并当前字符配对检查。如果最终整个过程中没有发生错误且栈为空,则说明该串中的所有括号都正确匹配。 ```python def is_valid_parentheses(s: str) -> bool: stack = [] mapping = {")": "(", "}": "{", "]": "["} for char in s: if char in mapping.values(): stack.append(char) elif char in mapping.keys(): top_element = stack.pop() if stack else '#' if mapping[char] != top_element: return False else: continue return not stack ``` 上述例子中实现了完整的括号合法性检测流程,适用于多种不同类型的括号组合情况。 #### 总结 综上所述,在面对PTA平台上的特定习题时,理解其背后的原理至关重要。无论是选择合适的数据结构还是设计有效的算法策略,都需要紧密结合实际需求展开思考。希望以上分享能帮助到正在探索这些问题的朋友!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值