python 复杂数据相似度计算_各种相似度计算的python实现

本文介绍了Python中实现几种常见的数据相似度计算方法,包括欧几里德距离、皮尔逊相关度、曼哈顿距离和Jaccard系数。通过具体的代码示例展示了如何计算这些相似度,并提供了测试数据集和计算结果。
摘要由CSDN通过智能技术生成

各种相似度计算的python实现

在数据挖掘中有很多地方要计算相似度,比如聚类分析和协同过滤。计算相似度的有许多方法,其中有欧几里德距离、曼哈顿距离、Jaccard系数和皮尔逊相关度等等。我们这里把一些常用的相似度计算方法,用python进行实现以下。如果是初学者,我认为把公式先写下来,然后再写代码去实现比较好。

f4ff9f0d677151cec3e0bd1b5fe252ae.png

欧几里德距离

几个数据集之间的相似度一般是基于每对对象间的距离计算。最常用的当然是欧几里德距离,其公式为:

#-*-coding:utf-8 -*-

#计算欧几里德距离:

def euclidean(p,q):

#如果两数据集数目不同,计算两者之间都对应有的数

same = 0

for i in p:

if i in q:

same +=1

#计算欧几里德距离,并将其标准化

e = sum([(p[i] - q[i])**2 for i in range(same)])

return 1/(1+e**.5)

我们用数据集可以去算一下:

p = [1,3,2,3,4,3]

q = [1,3,4,3,2,3,4,3]

print euclidean(p,q)

得出结果是:0.261203874964

皮尔逊相关度

几个数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值