Python学习教程:用Pandas做多层级索引难吗?

有的伙伴想学用Pandas做多层级索引,但不知道从何学起,难度肯定会有的,还是得掌握方法!前面出的Python学习教程有跟大家讲到过,这里再将一期!

Pandas库的名字来源于其中3种主要数据结构开头字母的缩写:Panel,Dataframe,Series其中Series表示一维数据,Dataframe表示二维数据,Panel表示三维数据。当数据高于二维时,一般却不用 Panel 表示,为什么呢?如果不用 Panel,又该怎么做呢?

实际上,当数据高于二维时,我们一般用包含多层级索引的Dataframe进行表示,而不是使用Panel。原因是使用多层级索引展示数据更加直观,操作数据更加灵活,并且可以表示3维,4维乃至任意维度的数据。具体要怎么做呢?下面我们就从多层级索引的创建、取值与操作等内容教大家一些方法!

一、多层级索引的创建

1、指定多维列表作为columns



2、使用pd.MultiIndex中的方法显式生成多层级索引

可以使用pd.MultiIndex中的from_tuples等方法生成多层级索引。



3、使用set_index方法将普通列转成多层级索引

这种方法只能生成多层级行索引。







4、groupby和pivot_table等方法也可以生成带有多层级索引的结果





二、多层级索引的取值

多层级索引Series或多层级DataFrame支持方括号直接取值,loc取值,和pd.IndexSlice切片取值等方法。

1、多层级Series的取值









2、多层级DataFrame的取值











三、多层级索引相关操作

多层级索引相关操作包括stack和unstack,set_index和reset_index,以及指定level的相关方法。

1、stack和unstack






2、set_index和reset_index





3、指定level的相关方法








伙伴们那些地方不清楚的可以留言哦!


转载于:https://juejin.im/post/5d301746f265da1bbe5e3b65

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值