yungeisme的博客

共勉!!!

Python-搞懂多种函数参数的用法

Python-搞懂多种函数参数的用法 参数作为函数调用中传递给函数体的数据,具有多种形式,在函数定义中可分为:普通参数、默认值参数、args参数、kwargs参数,在函数调用中:位置参数、关键字参数。 接下来,该博文叙述上述参数的用法及其特性。 1 普通参数 def Print(line,...

2018-09-09 16:55:26

阅读数 186

评论数 0

Pandas详解二十六之Apply--对行、列用函数处理

约定: import pandas as pd Apply–对行、列用函数处理 俗话说,工欲善其事,必先利其器。在这里形容apply函数再合适不过了,apply函数,可以说是pandas中自由度最高的函数。不过,是否能发挥其巨大威力,取决于我们的创造力。 在本博...

2018-09-02 08:25:02

阅读数 3468

评论数 2

SVN checckout 失败:Error: REPORT request on '/svn/signature/!svn/me' failed 的解决办法

SVN checckout 失败:Error: REPORT request on ‘/svn/signature/!svn/me’ failed 的解决办法 错误如下: 步骤: 1 解锁 右击checkout的文件->tortoiseSVN-&a...

2018-08-29 10:57:28

阅读数 3415

评论数 1

Pandas详解二十五之聚合运算agg

约定: import pandas as pd 聚合运算 在数据分析中,对数据聚合(求和、平均值等)通常是不可避免的。在将数据分组(groupby)后,新手若不知函数 agg() 的情况下,很有可能写出二三十行的for循环只为求每个分组的平均值。在这里,介绍个强大...

2018-08-28 15:49:17

阅读数 1738

评论数 0

超Easy正则表达式实战教程---入门 :匹配多种形式浮点数

超Easy正则表达式实战教程—入门 :匹配多种形式浮点数 浮点数多种形式,包括如下: 3.6 , +3.14 , -3.14 , .7 正确匹配上述浮点数,正确姿势如下: ~ [+-]?[0-9]+.[0-9]+|.[0-9]+ ~ 若有疑惑,或新手刚上路,可往下看。 该博客是用...

2018-08-03 10:56:43

阅读数 909

评论数 0

Pandas详解二十四之写入CSV、Excel文件

约定: import pandas as pd import numpy as np import sys 写入CSV文件 写入csv文件是最常用的,csv文件默认用’,’作为分隔符。 df1.to_csv(path_or_buf=None, sep=’,’, na_rep=”, ...

2018-08-03 08:59:33

阅读数 4399

评论数 0

Pandas详解二十三之读取CSV、Excel文件

约定: import pandas as pd 读取CSV文件 csv文件以.csv后缀结尾,默认用’,’作为分隔符,pandas提供了pd.read_csv()函数供我们读取csv文件: pd.read_csv(filepath_or_buffer, sep=...

2018-08-01 10:29:20

阅读数 1208

评论数 0

Pandas详解二十二之离散化(分组、区间化)

约定 import pandas as pd 离散化 通常对于我们不想要连续的数值,我们可将其离散化,离散化也可称为分组、区间化。 Pandas为我们提供了方便的函数cut(): pd.cut(x, bins, right=True, labels=None, retbins=F...

2018-07-24 17:44:56

阅读数 3464

评论数 4

Pandas详解二十一之移除重复数据

约定 import pandas as pd 移除重复数据 DataFrame中经常会出现重复行,利用duplicated()函数返回每一行判断是否重复的结果(重复则为True),drop_duplicates([key1,key2,..])则可去除重复行。 1 判断每一行是否重复...

2018-07-24 17:41:06

阅读数 2018

评论数 0

Pandas详解二十之Merge、Join、Concat方式-详解Pandas对象合并、连接

约定: import pandas as pd Merge-数据库风格的合并 数据的合并(merge)和连接(join)是我们在数据分析和挖掘中不可或缺的,是通过一个或一个以上的键连接的。pandas的合并(merge)的的绝大功能和数据库操作类似的。具有如下参数...

2018-06-12 13:00:12

阅读数 765

评论数 2

Pandas详解十九之轴向连接Pandas对象-Concat

约定: import pandas as pd 轴向连接-Concat 在数据处理中,通常将原始数据分开几个部分进行处理而得到相似结构的Series或DataFrame对象,我们该如何进行纵向合并它们?这时我们可以选择用pd.concat()方式极易连接两个或两个...

2018-06-12 12:47:20

阅读数 319

评论数 0

Pandas详解十八之DataFrame对象的-Join合并

约定: import pandas as pd 对象的实例方法-Join DataFrame对象有个df.join()方法也能进行pd.merge()的合并,它能更加方便地按照对象df的索引进行合并,且能同时合并多个DataFrame对象。它具有如下参数: df...

2018-06-11 22:56:17

阅读数 2955

评论数 0

Urllib3+BeautifulSoup+Thread:多线程爬虫教程(爬取西刺代理IP)

导入模块 from bs4 import BeautifulSoup import urllib3 import urllib import threading Urllib3+BeautifulSoup+Thread:多线程爬虫教程(爬取西刺代理IP) 爬虫是学python中最好...

2018-06-02 20:16:15

阅读数 687

评论数 0

Pandas详解十七之Merge合并-数据库风格的合并

约定: import pandas as pd Merge-数据库风格的合并 数据的合并(merge)和连接(join)是我们在数据分析和挖掘中不可或缺的,是通过一个或一个以上的键连接的。pandas的合并(merge)的的绝大功能和数据库操作类似的。具有如下参数...

2018-05-31 20:35:44

阅读数 2515

评论数 2

Pandas详解十六之groupby分组后分开运算

约定 import pandas as pd import numpy as np groupby分组后分开运算 Groupby对象支持迭代,当我们分组后想保存分组结果而不想运算,或者分别对每组进行不同的运算,这时是十分有用的。 1 创建 df1=pd.DataFrame({'Dat...

2018-05-31 16:11:52

阅读数 4792

评论数 1

Python线程Threading的简单教程

约定: import threading import time Python线程Threading的简单教程 Python解释器使用了内部的GIL(全局解释器锁),在任意时刻只允许单个线程执行,无论有多少核,这限制了python只能在一个处理器上运行。当然使用多线程还是有好处的,不然也就没...

2018-05-20 08:43:48

阅读数 843

评论数 0

python进程在Windows下运行没有结果的问题

python进程在Windows下运行没有结果的问题 python进程在Win下运行有诸多限制,希望这个简单的博客有用。 代码: #创建一个简单进程每隔5秒打印时间一次 import multiprocessing import time def clock(wait_time): ...

2018-05-19 18:52:02

阅读数 1649

评论数 0

Pandas详解十五之利用GroupBy技术进行分组

约定: import pandas as pd import numpy as np GroupBy分组 对数据进行分组并对每个分组进行运算是数据分析中很重要的环节。该博客讲解了利用pandas的Groupby技术如何进行分组。下图简单介绍了分组的过程: ...

2018-04-26 21:30:24

阅读数 6635

评论数 7

Pandas详解十四之DataFrame对象的列和索引之间的转化

约定: import pandas as pd DataFrame对象的列和索引之间的转化 我们常常需要将DataFrame对象中的某列或某几列作为索引,或者将索引转化为对象的列。pandas提供了set_index()/reset_index() 来供我们使用。...

2018-04-26 21:16:09

阅读数 10617

评论数 0

Pandas详解十三之多级索引MultiIndex(层次化索引)

约定: import pandas as pd import numpy as np 多级索引 多级索引(也称层次化索引)是pandas的重要功能,可以在Series、DataFrame对象上拥有2个以及2个以上的索引。 实质上,单级索引对应Index对象,多级...

2018-04-24 21:36:29

阅读数 4241

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭