Problem(1.1)

Let $V$ be an $A$-module. Show that $V$ is completely reducible iff the intersection of all of the maximal submodules of $V$ is trivial. However, this is not valid for the regular module of the ring of integers $\mathbb{Z}$.

Pf:

The necessity is obviously. Now we consider the sufficiency:

  • $\cap_{i=1}^k M_i=0$ where the $M_i$ are maximal submodules of $V$.
  • $N_i=\sum_{i\neq j}M_j$ where the $N_i$ is the irreducible submodule of $V$
  • $V=M_i\oplus N_i$, then we have $V=V/(\cap M_i)\leq\oplus_i V/{M_i}=\oplus_i N_i$
  • Show $\sum N_i=\oplus N_i$ by definition
  • About the counterexample: $\cap_{p}(p)=0$, but if $\mathbb{Z}=(2)\oplus N$, then there exists an even number $0\neq k\in (2)\cap N$, a contradiction.

转载于:https://www.cnblogs.com/zhengtao1992/p/10844035.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值