matlab图像目标与背景分离_常见的图像分割方法

本文介绍了MATLAB中常见的图像分割方法,包括基于阈值、区域、边缘、特定理论、基因编码和小波变换的分割技术。重点讲解了阈值分割的原理、区域生长与分裂合并、边缘检测以及基于神经网络的分割方法。
摘要由CSDN通过智能技术生成
7837939fc04e1d6d5019f7a038a2b02a.png

点击上方“新机器视觉”,选择加"星标"或“置顶”

重磅干货,第一时间送达ab3f11f960350af9a0ac8e408262484c.png

1.基于阈值的分割方法

      灰度阈值分割法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。阈值分割方法实际上是输入图像f到输出图像g的如下变换:

e3f66c26afd7805a69ef833db52741e5.png

      其中,T为阈值;对于物体的图像元素,g(i,j)=1,对于背景的图像元素,g(i,j)=0。

      由此可见,阈值分割算法的关键是确定阈值,如果能确定一个适合的阈值就可准确地将图像分割开来。阈值确定后,阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。

      阈值分割的优点是计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值