HDU -4628 Pieces

         http://acm.hdu.edu.cn/showproblem.php?pid=4628

                     Pieces

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1610    Accepted Submission(s): 850


Problem Description
You heart broke into pieces.My string broke into pieces.But you will recover one day,and my string will never go back.
Given a string s.We can erase a subsequence of it if this subsequence is palindrome in one step. We should take as few steps as possible to erase the whole sequence.How many steps do we need?
For example, we can erase abcba from axbyczbea and get xyze in one step.
 

 

Input
The first line contains integer T,denote the number of the test cases. Then T lines follows,each line contains the string s (1<= length of s <= 16).
T<=10.
 

 

Output
For each test cases,print the answer in a line.
 

 

Sample Input
2
aa
abb
 

 

Sample Output
1
2
 

 

Source
题意 :  给一个字符串,每次可以删除一个回文串 ,比如 axbdyhba ;可以删 abyba ,剩下 xdh ; 问最少要删多少次能把字符串删除完 ;
分析; 首先状态压缩, 因为长度只有16 ;所以顶多是2^16-1 ;每个位1表示存在字母,0表示删除了这个字母 : 则一个所有0和1组成的二进制就可以表示出所有字符串的状态 : 比如 abcde : 他的状态是 11111 , ab_d_ 的状态是11010 ,表示删除第四个和第五个 :所以2^5-1能表示出所有你的子集,也就是字符串的所有状态 .而一个二进制对应着一个整数,利用哈希表,可以记录状态 is[i]=1 ,表示这个状态是回文串,
is[i]=0;表示这个状态不是回文串 ; 比如 串 acda , a_da 是一个回文串,二进制位1011 ,对应的整数位11 ;所有 is[11]=1 ;
当枚举出了所有的状态后,就可以dp过了 ; d[i] 表示 最少需要多少步能到达 i状态 ; 所以最终答案是, 最少需要多少步能到达全部删除完的状态,也就是 ,000000 , 即 d[0] ; 而 d[i]是通过后面得 d[j]状态通过删除字母到达d[i]状态的, 所以j>i 并且 j表示的二进制数的1的个数一定要比i多 ,因为1的个数就代表字母的个数, j状态要通过删除一些字母才能到达i状态,所以j的二进制里的1个数要比i多;也就是
要保证 (j|i)==j ,才能使用状态转移方程 d[i]=min(d[i],d[j]+1) ;
注意优化,我就是超时。

 

#include<stdio.h>
#include<string.h>
#define inf 1<<27
char str[20];
int dp[65536],len,mark[65536];
int min(int x,int y)
{
    if(x>y)
      return y;
    else
      return x;
}
int judge(char c[])
{
     int i,j,n;
     n=strlen(c);
         j=n-1;
    for(i=0;i<=n/2-1&&j>=n/2-1;i++)
    {
        if(c[i]!=c[j])
            {
                return 0;
            }
         j--;
    }
    return 1;
}
int solve(int x)
{
    char a[20];
     int r=0;
     int y,temp,q=0;
      temp=x;
      while(temp)
      {
          int cnt=temp%2;
          if(cnt==1)
              a[r++]=str[q];
             q++;
         temp=temp/2;
      }
       a[r]='\0';
     if(judge(a))
         return 1;
      else
        return 0;
}
void init()
{
    int i;
    for(i=1;i<1<<len;i++)
  {
     if(solve(i)==1)
         mark[i]=1;
      else
         mark[i]=0;
  }
}
int count(int n)
 {
     int num = 0;
     while(n){
        n &= (n - 1);
        num++;
       }
     return num;
 }
int main()
{
    int t,i,k,j;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        memset(mark,0,sizeof(mark));
        scanf("%s",str);
        len=strlen(str);
           init();
           if(judge(str))
               {
                   printf("1\n");
                   continue;
               }
               int s=(1<<len)-1;
               dp[s]=0;
             for(i =s-1;i>=0;i--)

           {
                 dp[i] = inf;
            for(j = i+1;j<=s;j=(j+1)|i)#include<stdio.h>
#include<string.h>
#define inf 1<<27
char str[20];
int dp[65536],len,mark[65536];
int min(int x,int y)
{
    if(x>y)
      return y;
    else
      return x;
}
int judge(char c[])
{
     int i,j,n;
     n=strlen(c);
         j=n-1;
    for(i=0;i<=n/2-1&&j>=n/2-1;i++)
    {
        if(c[i]!=c[j])
            {
                return 0;
            }
         j--;
    }
    return 1;
}
int solve(int x)
{
    char a[20];
     int r=0;
     int y,temp,q=0;
      temp=x;
      while(temp)
      {
          int cnt=temp%2;
          if(cnt==1)
              a[r++]=str[q];
             q++;
         temp=temp/2;
      }
       a[r]='\0';
     if(judge(a))
         return 1;
      else
        return 0;
}
void init()
{
    int i;
    for(i=1;i<1<<len;i++)
  {
     if(solve(i)==1)
         mark[i]=1;
      else
         mark[i]=0;
  }
}
int count(int n)
 {
     int num = 0;
     while(n){
        n &= (n - 1);
        num++;
       }
     return num;
 }
int main()
{
    int t,i,k,j;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        memset(mark,0,sizeof(mark));
        scanf("%s",str);
        len=strlen(str);
           init();
           if(judge(str))
               {
                   printf("1\n");
                   continue;
               }
               int s=(1<<len)-1;
               dp[s]=0;
             for(i =s-1;i>=0;i--)

           {
                 dp[i] = inf;
            for(j = i+1;j<=s;j=(j+1)|i)//#include<stdio.h>
#include<string.h>
#define inf 1<<27
char str[20];
int dp[65536],len,mark[65536];
int min(int x,int y)
{
    if(x>y)
      return y;
    else
      return x;
}
int judge(char c[])//判断回文串
{
     int i,j,n;
     n=strlen(c);
         j=n-1;
    for(i=0;i<=n/2-1&&j>=n/2-1;i++)
    {
        if(c[i]!=c[j])
            {
                return 0;
            }
         j--;
    }
    return 1;
}
int solve(int x)
{
    char a[20];
     int r=0;
     int y,temp,q=0;
      temp=x;
      while(temp)
      {
          int cnt=temp%2;
          if(cnt==1)
              a[r++]=str[q];
             q++;
         temp=temp/2;
      }
       a[r]='\0';
     if(judge(a))
         return 1;
      else
        return 0;
}
void init()
{
    int i;
    for(i=1;i<1<<len;i++)
  {
     if(solve(i)==1)
         mark[i]=1;
      else
         mark[i]=0;
  }
}
int count(int n)
 {
     int num = 0;
     while(n){
        n &= (n - 1);
        num++;
       }
     return num;
 }
int main()
{
    int t,i,k,j;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        memset(mark,0,sizeof(mark));
        scanf("%s",str);
        len=strlen(str);
           init();
           if(judge(str))
               {
                   printf("1\n");
                   continue;
               }
               int s=(1<<len)-1;
               dp[s]=0;
             for(i =s-1;i>=0;i--)

           {
                 dp[i] = inf;
            for(j = i+1;j<=s;j=(j+1)|i)// j = (j+1)|i能省去很多状态
            {
                if(mark[j-i])
                     {
                     dp[i] = min(dp[i],dp[j]+1);
                     }
              }
           }
      printf("%d\n",dp[0]);
    }
    return 0;
}

            {
                if(mark[j-i])
                     {
                     dp[i] = min(dp[i],dp[j]+1);
                     }
              }
           }
      printf("%d\n",dp[0]);
    }
    return 0;
}

            {
                if(mark[j-i])
                     {
                     dp[i] = min(dp[i],dp[j]+1);
                     }
              }
           }
      printf("%d\n",dp[0]);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/cancangood/p/3900069.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值