数据挖掘-贝叶斯定理

贝叶斯定理是统计学的一种分类的方法 

最简单的贝叶斯分类方法称为朴素贝叶斯分类的方法 

朴素贝叶斯法的一个重要条件是即一个属性值对分类的影响独立于其他属性值  也称为类条件独立性

p(H|X)=p(X|H)P(H)/P(X)    其中已经知道后者求前者,。即是后验=似然X先验/证据因子

朴素贝叶斯方法易于实现 ,而且在大多数的情况下能够获得较好的分类准确率。它的劣势在于它的条件独立性假设,如果数据之间各个属性之间有比较强的依赖关系,则不会取得好的结果。

如何处理属性之间的依赖关系呢?引入了贝叶斯信念网络

贝叶斯网络是一个有向无环图,图中的节点代表随机变量,可以对应于实际数据中的某一个属性。节点间的边代表变量之间的直接依赖的关系。

贝叶斯网络学习 -----------

贝叶斯网络中的变量可以是观测的,或隐藏在所有或某些训练的元组之中。隐藏数据的情况也称为缺失值或不完全数据。

 

转载于:https://www.cnblogs.com/fxd-address/p/4855755.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值