数据挖掘之朴素贝叶斯定理

本文介绍了朴素贝叶斯定理,通过一个实际的水果糖问题阐述了条件概率、先验概率和后验概率的概念,并展示了如何利用贝叶斯公式计算后验概率。此外,还讨论了朴素贝叶斯定理在数据挖掘中的应用,提供了一个数据集的分类问题作为示例。
摘要由CSDN通过智能技术生成

做下记录总结:朴素贝叶斯,可能大家都忘了,但是稍微提一下,给个公司,或许你还会知道怎么求解。


朴素贝叶斯公式:

image.png

首先这个公式为什么叫朴素贝叶斯呢?他是英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中首次提出的这个定理。

image.png

首先我们了解下”条件概率”: 在事件B发生的情况下,事件A发生的概率,用P(A|B)表示

对条件概率进行变形:

“先验概率”:p(A),即在B事件发生之前,对A事件概率的一个判断
“后验概率”:p(A|B),即在B事件发生之后,对A事件概率的重新评估
“可能性函数”:P(B|A)/P(B),一个调整因子,使得预估概率更接近真实概率

所以:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值