$Luogu2680/NOIp2015$ 运输计划

传送门

$Sol$

最暴力的做法就是枚举最长链上的边,然后再算一次所有的链长,更新$ans$.

这里要求最大的最小,容易想到二分答案.对于二分的值$mid$,扫一遍所有的链,若链长小于等于$mid$,那么是合法的不需要处理的.否则,就记录链上所有的边经过的次数$+1$.最后找到被经过次数等于链长大于$mid$的链数的最大的边,改成0,再看最长链是否小于等于$mid.$如果没有这样的边,那么$mid$显然是不合法的,是偏小的.

维护边经过的次数树上差分.

$Code$

 

#include<bits/stdc++.h>
#define il inline
#define Ri register int
#define go(i,a,b) for(Ri i=a;i<=b;++i)
#define yes(i,a,b) for(Ri i=a;i>=b;--i)
#define e(i,u) for(Ri i=b[u];i;i=a[i].nt)
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define db double
#define inf 2147483647
using namespace std;
il int read()
{
    Ri x=0,y=1;char c=getchar();
    while(c<'0'||c>'9'){if(c=='-')y=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
    return x*y;
}
const int N=300010;
int n,m,b[N],ct,dep[N],f[N][19],dis[N],t[N],num,dd,as;
bool fl;
struct nd{int v,w,nt;}a[N*2];
struct nd1{int u,v,l,lc;}c[N];
il void add(Ri u,Ri v,Ri w){a[++ct]=(nd){v,w,b[u]};b[u]=ct;}
il void build(Ri u,Ri fa)
{
    dep[u]=dep[fa]+1;
    f[u][0]=fa;
    go(i,1,18)f[u][i]=f[f[u][i-1]][i-1];
    e(i,u)
    {
    if(a[i].v==fa)continue;
    dis[a[i].v]=dis[u]+a[i].w;
    build(a[i].v,u);
    }
}
il int lca(Ri u,Ri v)
{
    if(dep[u]<dep[v])swap(u,v);
    yes(i,18,0)if(dep[f[u][i]]>dep[v])u=f[u][i];
    if(dep[u]!=dep[v])u=f[u][0];
    if(u==v)return u;
    yes(i,18,0)if(f[u][i]!=f[v][i])u=f[u][i],v=f[v][i];
    return f[u][0];
}
il bool cmp(nd1 x,nd1 y){return x.l>y.l;}
il int dfs(Ri u)
{
    Ri ret=0;
    e(i,u)
    {
    if(a[i].v==f[u][0])continue;
    Ri qvq=dfs(a[i].v);ret+=qvq;
    if(qvq==num)fl=1,dd=max(dd,a[i].w);
    }
    ret+=t[u];
    return ret;
}
il bool ck(Ri x)
{
    if(c[1].l<=x)return 1;
    mem(t,0);num=0;dd=0;fl=0;
    go(i,1,m)
    {
    if(c[i].l<=x)break;
    Ri u=c[i].u,v=c[i].v,lc=c[i].lc;
    ++t[u];++t[v];t[lc]-=2;++num;
    }
    dfs(1);
    if(!fl)return 0;
    if(c[1].l-dd>x)return 0;
    return 1;
}
int main()
{
    n=read(),m=read();
    go(i,1,n-1){Ri u=read(),v=read(),w=read();add(u,v,w);add(v,u,w);}
    build(1,0);
    go(i,1,m)
    {
    Ri u=read(),v=read(),lc=lca(u,v);
    c[i]=(nd1){u,v,dis[u]+dis[v]-2*dis[lc],lc};
    }
    sort(c+1,c+n+1,cmp);
    Ri l=0,r=c[1].l+1;
    while(l<=r)
    {
    Ri mid=(l+r)>>1;
    if(ck(mid))as=mid,r=mid-1;
    else l=mid+1;
    }
    printf("%d\n",as);
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/forward777/p/11560098.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
这是一道经典的组合数学题目,需要用到组合数的性质。 我们可以先考虑 $n=5$ 的情况。这时,一共有 $2^n=32$ 种可能的抛硬币的结果,其中正面朝上的硬币数为 $0,1,2,3,4,5$ 的情况分别有 $1,5,10,10,5,1$ 种。 接下来,我们考虑 $n$ 的任意情况。可以证明,当 $n$ 为偶数时,正面朝上的硬币数的种数与 $n=5$ 时是相同的;当 $n$ 为奇数时,正面朝上的硬币数的种数比 $n=5$ 时多一种。这是因为当抛硬币的次数为偶数时,正反面的数量是相等的,因此正面朝上的硬币数的种数与 $n=5$ 时相同;当抛硬币的次数为奇数时,正反面的数量不相等,因此正面朝上的硬币数的种数比 $n=5$ 时多一种。 因此,需要分别处理 $n$ 为奇数和偶数的情况。当 $n$ 为偶数时,正面朝上的硬币数的种数与 $n=5$ 时相同,因此答案为: $$ \sum_{i=0}^{n/2} \binom{n}{i} $$ 当 $n$ 为奇数时,正面朝上的硬币数的种数比 $n=5$ 时多一种,因此答案为: $$ \sum_{i=0}^{n/2} \binom{n}{i} + \sum_{i=0}^{n/2} \binom{n}{i+1} $$ 需要注意的是,当 $n$ 为 $0$ 时,只有一种可能的结果,即所有硬币都是反面朝上,因此答案为 $1$。 以下是一份参考代码,可以用于计算答案: ```c++ #include <iostream> #include <cmath> using namespace std; int main() { int n; cin >> n; if (n == 0) { cout << "1" << endl; } else { int ans = pow(2, n); if (n % 2 == 0) { for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i) * (1 << i) / (i + 1); } } else { for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i) * (1 << i) / (i + 1); } for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i - 1) * (1 << i) / (i + 1); } } cout << ans << endl; } return 0; } ``` 代码中使用了数学公式计算答案,其中 $\binom{n}{i}$ 使用了移项后再计算的方式,避免了复杂的组合数计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值