Codeforces Forethought Future Cup Elimination Round 选做

1146C Tree Diameter

题意

交互题。有一棵 \(n(n\le 100)\) 个点的树,你可以进行不超过 \(9\) 次询问,每次询问两个点集中两个不在同一点集的点的最大距离。求树的直径。

题解

GXOI2019旅行者 基本类似,二进制分组,对于每一位,编号当前位为 \(0\) 的分到一组,当前位为 \(1\) 的分到另一组。最大询问次数为 \(\log 100 = 7\)

code

#include<cstdio>
int v1[105],v2[105];
int main()
{
    int T; scanf("%d",&T);
    while(T--)
    {
        int n,ans=0; scanf("%d",&n);
        for(int i=0;i<=6;++i)
        {
            int id1=0,id2=0;
            for(int j=1;j<=n;++j) (j&(1<<i))?v1[++id1]=j:v2[++id2]=j;
            if(id1&&id2)
            {
                printf("%d %d ",id1,id2);
                for(int i=1;i<=id1;++i) printf("%d ",v1[i]);
                for(int i=1;i<=id2;++i) printf("%d ",v2[i]);
                puts(""); fflush(stdout);
                int x; scanf("%d",&x);
                if(x>ans) ans=x;
            }
        }
        printf("-1 %d\n",ans);
        fflush(stdout);
    }
}

1146D Frog Jumping

题意

有一条数轴,一只青蛙在原点,可以向前跳 \(a\) 步或向后跳 \(b\) 步。

定义 \(f(x)\) 表示青蛙在 \([0,x]\) 里跳,能跳到的点数。

\(\sum_{i=0}^m f(i)\)\(m\le 10^9, a,b\le 10^5\)

题解

能到达的点 \(c\) 能被表示为 \(ax-by=c\)

根据裴蜀定理,能到达的点一定是 \(\gcd(a,b)\) 的倍数。

但是,当 \(i<a+b\) 时,\(f(i)\) 由于跳的点不能超过 \(i\) ,有的点可能会无法跳到。故 \(f(0)\sim f(a+b)\) 的答案我们要另外计算。

我们考虑贪心的去跳,当跳的步数 \(>b\) 就减去 \(b\) 。暴力枚举 \(i\) 统计有多少个点能到达即可。

注意不要重复统计答案。

code

#include<cstdio>
int gcd(int x, int y) {
    return y?gcd(y,x%y):x;
}
const int N=2e5+5;
bool vis[N];
int step[N],tot;
int main()
{
#ifndef ONLINE_JUDGE
    freopen("sol.in","r",stdin);
#endif
    int m,a,b;
    scanf("%d%d%d",&m,&a,&b);
    const int g=gcd(a,b);
    long long ans=1ll*(1+m/g+1)*(m/g+1)/2ll*g-1ll*(1ll*(m/g+1)*g-m-1)*(m/g+1);
    vis[step[++tot]=0]=true;
    while(true)
    {
        ++tot;
        step[tot]=step[tot-1]>=b?step[tot-1]-b:step[tot-1]+a;
        if(vis[step[tot]]) break;
        vis[step[tot]]=true;
    } --tot;
    for(int i=0,j=1;i<a+b&&i<=m;++i)
    {
        ans-=i/g+1;
        while(step[j]<=i&&j<=tot) ++j;
        ans+=j-1;
    }
    printf("%lld",ans);
}

1146E Hot is Cold

题意

给你一个长度为 \(n\) 的序列和 \(q\) 个操作,每次操作将 \(<x_i\) 的取反或 \(>x_i\) 的数取反。求最后的序列。\(n,q\le 10^5\)

题解

对正数和负数分别维护权值线段树,然后分类讨论维护每个数是否被取反的标记。

考虑 \(>x\) :当 \(x<0\) :将绝对值 \(>x\) 的数置为负 ; 当 \(x>0\) ,将正负数绝对值 \(<-x\) 标记取反,绝对值 \(\ge -x\) 的数置为负;

\(<x\) 与上述类似。

有神仙线性做法,待补充……

code

#include<cstdio>
#include<cstring>
inline int gi()
{
    char c=getchar(); int x=0,f=1;
    for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
    for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
    return x*f;
}
const int N=1e5+5;
int st[2][N<<2],tg[2][N<<2],rev[2][N<<2],fg[2][N<<2],a[N],n,q,m;
#define lx (x<<1)
#define rx (x<<1|1)
void pushdown(int i, int x)
{
    if(tg[i][x]!=-1)
    {
        tg[i][lx]=tg[i][rx]=st[i][lx]=st[i][rx]=tg[i][x];
        tg[i][x]=-1;
    }
    if(fg[i][x])
    {
        fg[i][lx]=fg[i][rx]=1;
        rev[i][lx]=rev[i][rx]=0;
        fg[i][x]=0;
    }
    if(rev[i][x])
    {
        rev[i][lx]^=1,rev[i][rx]^=1;
        st[i][lx]^=1,st[i][rx]^=1;
        rev[i][x]=0;
    }
}
void rever(int i, int x, int l, int r, int sl, int sr)
{
    if(sl>sr) return ;
    if(sl<=l&&r<=sr) {
        rev[i][x]^=1,st[i][x]^=1; return ;
    }
    pushdown(i,x);
    int mid=l+r>>1;
    if(sl<=mid) rever(i,lx,l,mid,sl,sr);
    if(sr>mid) rever(i,rx,mid+1,r,sl,sr);
}
void update(int i, int x, int l, int r, int sl, int sr, int w)
{
    if(sl>sr) return ;
    if(sl<=l&&r<=sr)
    {
        tg[i][x]=st[i][x]=w, rev[i][x]=0, fg[i][x]=1;
        return ;
    }
    pushdown(i,x);
    int mid=l+r>>1;
    if(sl<=mid) update(i,lx,l,mid,sl,sr,w);
    if(sr>mid) update(i,rx,mid+1,r,sl,sr,w);
}
int qry(int i, int x, int l, int r, int s)
{
    if(l==r) return st[i][x];
    pushdown(i,x);
    int mid=l+r>>1;
    return (s<=mid?qry(i,lx,l,mid,s):qry(i,rx,mid+1,r,s));
}
int main()
{
    n=gi(),q=gi();
    for(int i=1;i<=n;++i)
    {
        a[i]=gi();
        if(a[i]>m) m=a[i];
        if(-a[i]>m) m=-a[i];
    }
    memset(tg,-1,sizeof(tg));
    while(q--)
    {
        char s[2]; scanf("%s",s);
        int x=gi();
        if(s[0]=='>')
        {
            if(x>0)
            {
                update(0,1,1,m,x+1,m,0);
                update(1,1,1,m,x+1,m,1);
            }
            else
            {
                rever(0,1,1,m,1,-x-1);
                update(0,1,1,m,-x,m,0);
                rever(1,1,1,m,1,-x-1);
                update(1,1,1,m,-x,m,1);
            }
        }
        else
        {
            if(x<0)
            {
                update(0,1,1,m,-x+1,m,1);
                update(1,1,1,m,-x+1,m,0);
            }
            else
            {
                rever(0,1,1,m,1,x-1);
                update(0,1,1,m,x,m,1);
                rever(1,1,1,m,1,x-1);
                update(1,1,1,m,x,m,0);
            }
        }
    }
    for(int i=1;i<=n;++i)
    {
        if(a[i]==0) printf("0 ");
        else if(a[i]<0) printf("%d ",a[i]*(qry(0,1,1,m,-a[i])?-1:1));
        else printf("%d ",a[i]*(qry(1,1,1,m,a[i])?-1:1));
    }
}

1146F Leaf Partition

题意

给你一棵 \(n\) 个节点的树,将叶子节点划分成若干个集合,使得每个集合的虚树互不相交。求划分方案数。

\(n\le 2\cdot 10^5\)

题解

\(f(u,0)\) 表示 \(u\) 不属于任何集合的方案数。

\(f(u,1)\) 表示 \(u\) 连通了 \(1\) 个子节点。显然,当前节点必须要连通到上面的集合。

\(f(u,2)\) 表示 \(u\) 连通了 \(2\) 个以上的子节点。

这样,对于子节点 \(v\) ,将其分到不同集合的方案数为 \(f(v,0)+f(v,2)\) ,设为 \(x\) ;将其分到同一集合的方案数为 \(f(v,1)+f(v,2)\) ,设为 \(y\)

这样就不难得出转移:

\[ \begin{cases} f'(u,0)=f(u,0)\times x\\ f'(u,1)=f(u,0)\times y+f(u,1)\times x \\ f'(u,2)=f(u,1)\times y+f(u,2)\times (x+y) \end{cases} \]

code

#include<cstdio>
inline int gi()
{
    char c; int x=0;
    for(;c<'0'||c>'9';c=getchar());
    for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
    return x;
}
const int N=200005,Mod=998244353;
int f[N][3],head[N],nxt[N],to[N],n;
void addedge(int u, int v, int now) {
    nxt[now]=head[u], head[u]=now, to[now]=v;
}
#define mul(x,y) (1ll*x*y%Mod)
void dfs(int u)
{
    if(!head[u]) f[u][2]=1;
    else f[u][0]=1;
    for(int e=head[u];e;e=nxt[e])
    {
        int& v=to[e];
        dfs(v);
        int x=(f[v][0]+f[v][2])%Mod,y=(f[v][1]+f[v][2])%Mod;
        int f0=mul(f[u][0],x);
        int f1=(mul(f[u][0],y)+mul(f[u][1],x))%Mod;
        int f2=(mul(f[u][1],y)+mul(f[u][2],(x+y)%Mod))%Mod;
        f[u][0]=f0,f[u][1]=f1,f[u][2]=f2;
    }
}
int main()
{
    n=gi();
    for(int i=2;i<=n;++i)
        addedge(gi(),i,i-1);
    dfs(1);
    printf("%d",(f[1][0]+f[1][2])%Mod);
}

转载于:https://www.cnblogs.com/farway17/p/10752671.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值