Codeforces 1146 F Leaf Partition —— 树形DP,分割叶子结点使得每个集合路径无交集

202 篇文章 6 订阅

This way

题意:

给你一棵树,让你将它的所有叶子结点划分成若干个集合,每个节点只出现在某一个集合中,并且设G(x)表示将叶子结点x集合连通的最小连通子图。你所划分的这些集合的连通子图互不相交,问你有多少种方法。

题解:

我一开始都看不出来是树形dp,看来还是太菜了、、
那么到了每个点有两种情况:向上连和不向上连,那么
d p [ x ] [ 0 ] = ∏ n e ∈ s o n [ x ] ( d p [ n e ] [ 0 ] + d p [ n e ] [ 1 ] ) − ∏ n e ∈ s o n [ x ] d p [ n e ] [ 0 ] d p [ n o w ] [ 0 ] ∗ d p [ n o w ] [ 1 ] ( n o w ∈ s o n [ x ] ) dp[x][0]=\prod_{ne∈son[x]}(dp[ne][0]+dp[ne][1])-\frac{\prod_{ne∈son[x]}dp[ne][0]}{dp[now][0]}*dp[now][1](now∈son[x]) dp[x][0]=neson[x](dp[ne][0]+dp[ne][1])dp[now][0]neson[x]dp[ne][0]dp[now][1](nowson[x])
表示当前点不连上去的话,那么它的情况数是所有情况数-有一个儿子连到儿子上边的情况数,因为只有一个儿子自己是不能将这个点划入它的最小子图的。
dp[x][1]也类似,但是要减掉一个儿子都不往上连的情况。

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
#define ll long long
const ll mod=998244353;
ll dp[N][2];
struct node{
    int to,next;
}e[N*2];
int cnt,head[N];
void add(int x,int y){
    e[cnt].to=y;
    e[cnt].next=head[x];
    head[x]=cnt++;
}
ll qpow(ll a,ll b){ll ans=1;for(;b;b>>=1,a=a*a%mod)if(b&1)ans=ans*a%mod;return ans;}
void dfs(int x){
    ll mul=1;
    dp[x][0]=dp[x][1]=1;
    int son=0;
    for(int i=head[x];~i;i=e[i].next){
        int ne=e[i].to;
        dfs(ne);
        son++;
        dp[x][1]=dp[x][0]=dp[x][0]*(dp[ne][0]+dp[ne][1])%mod;
        mul=mul*dp[ne][0]%mod;
    }
    if(!son)return ;
    dp[x][1]=(dp[x][1]-mul+mod)%mod;
    for(int i=head[x];~i;i=e[i].next){
        int ne=e[i].to;
        dp[x][0]=(dp[x][0]-mul*qpow(dp[ne][0],mod-2)%mod*dp[ne][1]%mod+mod)%mod;
    }
}
int main()
{
    int n;
    scanf("%d",&n);
    int p;
    memset(head,-1,sizeof(head));
    for(int i=2;i<=n;i++)
        scanf("%d",&p),add(p,i);

    dfs(1);
    printf("%lld\n",dp[1][0]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值