题意:
给你一棵树,让你将它的所有叶子结点划分成若干个集合,每个节点只出现在某一个集合中,并且设G(x)表示将叶子结点x集合连通的最小连通子图。你所划分的这些集合的连通子图互不相交,问你有多少种方法。
题解:
我一开始都看不出来是树形dp,看来还是太菜了、、
那么到了每个点有两种情况:向上连和不向上连,那么
d
p
[
x
]
[
0
]
=
∏
n
e
∈
s
o
n
[
x
]
(
d
p
[
n
e
]
[
0
]
+
d
p
[
n
e
]
[
1
]
)
−
∏
n
e
∈
s
o
n
[
x
]
d
p
[
n
e
]
[
0
]
d
p
[
n
o
w
]
[
0
]
∗
d
p
[
n
o
w
]
[
1
]
(
n
o
w
∈
s
o
n
[
x
]
)
dp[x][0]=\prod_{ne∈son[x]}(dp[ne][0]+dp[ne][1])-\frac{\prod_{ne∈son[x]}dp[ne][0]}{dp[now][0]}*dp[now][1](now∈son[x])
dp[x][0]=∏ne∈son[x](dp[ne][0]+dp[ne][1])−dp[now][0]∏ne∈son[x]dp[ne][0]∗dp[now][1](now∈son[x])
表示当前点不连上去的话,那么它的情况数是所有情况数-有一个儿子连到儿子上边的情况数,因为只有一个儿子自己是不能将这个点划入它的最小子图的。
dp[x][1]也类似,但是要减掉一个儿子都不往上连的情况。
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
#define ll long long
const ll mod=998244353;
ll dp[N][2];
struct node{
int to,next;
}e[N*2];
int cnt,head[N];
void add(int x,int y){
e[cnt].to=y;
e[cnt].next=head[x];
head[x]=cnt++;
}
ll qpow(ll a,ll b){ll ans=1;for(;b;b>>=1,a=a*a%mod)if(b&1)ans=ans*a%mod;return ans;}
void dfs(int x){
ll mul=1;
dp[x][0]=dp[x][1]=1;
int son=0;
for(int i=head[x];~i;i=e[i].next){
int ne=e[i].to;
dfs(ne);
son++;
dp[x][1]=dp[x][0]=dp[x][0]*(dp[ne][0]+dp[ne][1])%mod;
mul=mul*dp[ne][0]%mod;
}
if(!son)return ;
dp[x][1]=(dp[x][1]-mul+mod)%mod;
for(int i=head[x];~i;i=e[i].next){
int ne=e[i].to;
dp[x][0]=(dp[x][0]-mul*qpow(dp[ne][0],mod-2)%mod*dp[ne][1]%mod+mod)%mod;
}
}
int main()
{
int n;
scanf("%d",&n);
int p;
memset(head,-1,sizeof(head));
for(int i=2;i<=n;i++)
scanf("%d",&p),add(p,i);
dfs(1);
printf("%lld\n",dp[1][0]);
return 0;
}