@总结 - 12@ burnside引理与pólya定理


@0 - 参考资料@

博客1

@1 - 问题引入@

一个经典问题:

一正方形分成4格,2着色,有多少种方案?
其中,经过转动相同的图象算同一方案。

假如不考虑转动,各种方案如下所示。
1459581-20190927133822931-1544277671.jpg

首先可以发现,转动的角度只有 4 种:0°,90°,180°,270°。
然后可以得到,每一次转动可以将一个方案唯一映射成另一个方案(可以是自身)。
于是我们可以用一个置换 p 描述一次旋转的效果,其中 p[i] 表示第 i 种方案被映射成了第 p[i] 种方案。

在这个例子中,4 种置换(0°,90°,180°,270°)构成了一个置换群
(什么是置换群。。。emmm可以自行左转百度)

(以下的记法都是不严谨的,因为是根据我自己的记忆写的)
如果置换 f 使得元素 i 映射成 j,我们就记作 \(f:i -> j\)

对于置换群 G,如果存在 \(f\in G\),以及 \(f:x -> y\),我们就称 x, y 为等价类。
显然这个等价关系满足传递性、自反性、对称性(对应群的几个性质)。
那么我们相等于求在置换群G的作用下的等价类个数

@2 - burnside引理@

先抛结论:

我们称对于 f,满足 f:x -> x 的 x 为 f 作用下的不动点。记 c(f) 表示 f 的不动点个数。
则 G 作用下的等价类个数为:
\[cnt = \frac{\sum_{f\in G}c(f)}{|G|}\]

证明是我自己BB的,与主流证法不大一样(我也记不到主流证法了),所以可能不够简便。

引入(一个非常不严谨的)记法:记 \(S_{i, j}\) 表示将 i 映射到 j 的置换组成的集合。

首先证明几个引理:

引理 1:\(|S_{i, j}| = |S_{j, i}|\)
证明:等价于证明 \(|S_{i, j}| \le |S_{j, i}|\)\(|S_{j, i}| \le |S_{i, j}|\)
只需考虑 \(|S_{i, j}| \le |S_{j, i}|\),另一半同理可证。
对于 \(f \in S_{i, j}\),它的逆元 \(f^{-1} \in S_{j, i}\)。且根据置换群的性质,每个元素的逆元是唯一的,且不同元素的逆元不同。
所以 \(S_{j, i}\) 至少含有 \(|S_{i, j}|\) 个元素——即它们的逆元。

引理 2:若 \(S_{i, j}\) 不为空,则 \(|S_{i, j}| = |S_{i, i}|\)
证明:只需证明 \(|S_{i, j}| \le |S_{i, i}|\)\(|S_{i, i}| \le |S_{i, j}|\)
\(S_{j, i}\) 中任选一个元素 \(f\)\(f\)\(S_{i, j}\) 中的每一个 \(g\) 相乘得到 \(f*g\)
显然有 \(f*g \in S_{i, i}\),且 g 不相同时,得到的结果也一定不同,所以 \(|S_{i, j}| \le |S_{i, i}|\)
然后依然是从 \(S_{j, i}\) 中任选一个元素 \(f\)\(f\)\(S_{i, i}\) 中的每一个 \(g\) 相乘得到 \(f*g\)
\(f*g \in S_{j, i}\),且 g 不相同时,得到的结果也不同。故又得到 \(|S_{i, i}| \le |S_{j, i}| = |S_{i, j}|\)(由引理 1)。

引理 3:一个等价类中的不动点数量总和 = |G|。
证明:设该等价类 \(E = {x_1, x_2, ..., x_k}\)
则有 \(\sum_{i=1}^{k}|S_{x_1, x_i}| = |G|\)(每个在 G 中的置换一定会把 \(x_1\) 映射成等价类中的某个数)。
根据引理 1 + 引理 2,可以得到 \(\sum_{i=1}^{k}|S_{x_i, x_i}| = |G|\),于是得证。

有了引理 3,就可以推导出我们的 burnside 引理的正确性了,因为不动点的总数 = 等价类个数*|G|。

@3 - pólya定理@

(注意是 pólya 定理而不是 polya 定理,虽然这不重要不过还是要看起来专业点)

burnside 引理提出了一种统计等价类的一般方法,而 pólya 定理提出了在染色问题下的不动点具体计算方法。

在我们一开始给出的问题中,假如我们要老老实实地算,要算 2^(2+2) 个方案在置换下是否为不动点。
当数据范围增大时,方案数急剧增大,burnside引理就失去了意义。

我们不妨把 2*2 个点拿出来,构建置换群。以下假设可用颜色数量为 m。

我们将每个置换循环分解,则这个置换作用下的不动点肯定是相同循环内的元素涂相同颜色。
设置换 f 的循环分解后共有 c(f) 个循环,则 f 作用下不动点数量为 \(m^{c(f)}\)

则 G 作用下不动点数量为:
\[cnt = \frac{\sum_{f\in G}m^{c(f)}}{|G|}\]

这样就可以将指数级复杂度化为多项式复杂度。

@4 - pólya定理的生成函数形式@

可以发现,pólya 定理是非常显然的。但同时 pólya 定理也是非常普遍应用的。

但是!如果结合万能的生成函数,我们就可以得到一些更有趣的东西。

还是一开始的典型例子,假如我们想要知道固定黑色格子有多少个时,本质不同的方案数。
这时候我们就需要利用生成函数了。

假如置换 f 进行循环分解得到 k 个循环,每个循环的循环节大小分别为 x1, x2, ..., xk。
则这个置换 f 对应的生成函数为 \(F(f) = \prod_{i=1}^{k}(b^{x_i} + w^{x_i})\)。其中 b, w 就是形式变量。
整个置换群 G 的生成函数为:
\[F(G) = \frac{\sum_{f\in G}F(f)}{|G|}\]

则 G 中的 \(b^i*w^j\) 项的系数等于涂 i 格黑色与 j 格白色的方案数。
比如对于我们一开始的例子,生成函数为:
\[F(G) = \frac{1}{4}((b + w)^4 + (b^4 + w^4) + (b^2 + w^2)^2 + (b^4 + w^4)) = w^4+w^3b+2w^2b^2+wb^3+b^4\]

验证一下就可以发现它的正确性。

转载于:https://www.cnblogs.com/Tiw-Air-OAO/p/11595618.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值