Burnside引理与Pólya计数

7 篇文章 0 订阅
6 篇文章 0 订阅

前置知识

1.群
2.置换
3.置换群

问题背景

求解等价染色问题。(本质相同)
比如用k种颜色给一个2*2的方格染色,并认为旋转后相同的方案是本质相同的。 求有多少本质不同的方案。

Burnside引理

上面的问题也就是在求等价类个数了。
这个问题中,置换群就是恒等置换,转90,转180,转270。
先给出式子,将在后面证明。
等 价 类 个 数 = ∑ C ( f ) ∣ G ∣ 等价类个数 = \frac {\sum C(f)} {|G|} =GC(f)
其中C(f)为对于置换f,满足 c ⋅ f = c c \cdot f = c cf=c的着色方案(也简称着色,将置换f作用在c上)c个数(不动点个数)。
∣ G ∣ |G| G 为置换群的大小(阶)。

证明

定义 G ( c ) G(c) G(c)为着色c的稳定核,是置换群的子集。其中的置换f满足 c ⋅ f = c c \cdot f = c cf=c

由定义我们有
∑ C ( f ) = ∑ G ( c ) \sum C(f) = \sum G(c) C(f)=G(c)

即总的不动着色 - 置换 ( c , f ) (c, f) (c,f)对数相等。

现在我们通过改变右式来证明burnside定理。
考虑稳定核大小与等价类个数的关系,在稳定核 G ( c ) G(c) G(c)中置换f,g必定满足 c ⋅ f = c ⋅ g = c c \cdot f = c \cdot g = c cf=cg=c

联系群的运算性质,对于任意的f,g,若 c ⋅ f = c ⋅ g c \cdot f = c \cdot g cf=cg
那么这样的g实际上是 h ⋅ f , h ∈ G ( c ) h \cdot f,h \in G(c) hfhG(c). (这可以通过左右同乘 f − 1 f^{-1} f1得到。)

这说明,对于任意着色c与置换f,满足上式的g实际上有 ∣ G ( c ) ∣ |G(c)| G(c)个(当然也包含f自己,左右同乘恒等置换就是)。再进一步推理, c ⋅ f c \cdot f cf的不同结果应有 ∣ G ∣ ∣ G ( c ) ∣ \frac {|G|} {|G(c)|} G(c)G个,换而言之,c所在等价类的大小便是上式。

那么就能得出下面的式子
∣ G ( c ) ∣ = ∣ G ∣ S c |G(c)| = \frac {|G|} {S_c} G(c)=ScG,Sc是c所在等价类大小。

将式子带回原式右侧,便有 ∑ C ( f ) = ∣ G ∣ ∑ 1 S c \sum C(f) = |G|\sum \frac {1} {S_c} C(f)=GSc1

很显然,右边便是 ∣ G ∣ ∗ 等 价 类 个 数 |G| * 等价类个数 G,这便是burnside定理了。

Polya计数

其实这个是burnside的进一步结论。

发现对于burnside来说,主要任务便是找置换群与求不动点个数。

polya便利用了一个求不动点的简单结论。
对于一个置换f,若他能被写为k个不相交循环,那么 ∣ C ( f ) ∣ = a k |C(f)| = a^k C(f)=ak,其中a是颜色数目。

这个结论感性理解即可,即每一循环都染上相同的颜色,这样在置换后才能不变。

与burnside写在一起,是 等 价 类 个 数 = ∑ a m ( f ) ∣ G ∣ 等价类个数 = \frac {\sum a^{m(f)}} {|G|} =Gam(f)
m(f)是不相交循环个数。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值