[题解]诸侯安置(dp+组合)

题目链接:这里~

题目描述:

 

很久以前,有一个强大的帝国,它的国土成正方形状,如图所示。

 

这个国家有若干诸侯。由于这些诸侯都曾立下赫赫战功,国王准备给他们每人一块封地(正方形中的一格)。但是,这些诸侯又非常好战,当两个诸侯位于同一行或同一列时,他们就会开战。如下图2—3为n=3时的国土,阴影部分表示诸侯所处的位置。前两幅图中的诸侯可以互相攻击,第三幅则不可以。

 

国王自然不愿意看到他的诸侯们互相开战,致使国家动荡不安。 因此,他希望通过合理的安排诸侯所处的位置,使他们两两之间都不能攻击。

现在,给出正方形的边长n,以及需要封地的诸侯数量k,要求你求出所有可能的安置方案数。(n≤l00,k≤2n2-2n+1)

由于方案数可能很多,你只需要输出方案数除以504的余数即可。

输入输出格式

输入格式:

 

仅一行,两个整数n和k,中间用一空格隔开。

 

输出格式:

 

一个整数,表示方案数除以504的余数。


说明

注意:镜面和旋转的情况属于不同的方案。

思路:难在转移,这个图并不规整,但是可以发现,每个封地只会影响横竖两排,我们考虑能否通过平移使得等价与原图形且图形方便转移。

如果我们将所有方块平移上去,可以发现,对于横竖排方块数量没有影响。

所以可以转移,转移方程需要用到乘法原理,记得初始化。

f[i][j]=f[i-1][j]+(f[i-1][j-1]*(lim[i]-(j-1));

代码:

 

#include<bits/stdc++.h>
#define R register
using namespace std;
int n,k,f[320][320],lim[320],mo=504,Max;
int main(){
   scanf("%d%d",&n,&k);Max=n*2-1;
   R int w=1;f[0][0]=1;
   for(R int i=1;i<=Max;i++)f[i][0]=1;
   for(R int i=1;i<=Max;i+=2){
        lim[i]=lim[i+1]=w;
        w+=2;
   }
   for( R int i = 1; i <= Max ; i++ )
   for( R int j = 1;j <= min(i,k) ; j++ )
   f[i][j]=(f[i-1][j]+(f[i-1][j-1]*(lim[i]-(j-1)))%mo)%mo;
   printf("%d",f[Max][k]%mo);
   return 0;
}

 

转载于:https://www.cnblogs.com/sky-zxz/p/9831025.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值