伯努利数简单学习笔记

伯努利数

定义与公式

我们常用BiB_iBi定义第iii个伯努利数。

生成函数定义方式:
zez−1=∑n=0∞Bnznn! \frac{z}{e^z-1}=\sum\limits_{n=0}^\infty B_n\frac{z^n}{n!} ez1z=n=0Bnn!zn
这里的z∈Cz\in CzCCCC为复数域)
由于伯努利数是指数型函数的母函数,所以我们对exe^xex进行泰勒展开即可得到。


999项伯努利数:
B0=1   B1=−12   B2=16   B3=0   B4=−130B5=0   B6=142   B7=0   B8=−130   B9=0 B_0=1\ \ \ B_1=-\frac{1}{2}\ \ \ B_2=\frac{1}{6}\ \ \ B_3=0\ \ \ B_4=-\frac{1}{30} \\ B_5=0\ \ \ B_6=\frac{1}{42}\ \ \ B_7=0\ \ \ B_8=-\frac{1}{30}\ \ \ B_9=0 B0=1   B1=21   B2=61   B3=0   B4=301B5=0   B6=421   B7=0   B8=301   B9=0

我们不难发现对于BnB_nBn,当BnB_nBn为奇数且不为111时,Bn=0B_n=0Bn=0

其中有些时候定义B1=12B_1=\frac{1}{2}B1=21,那么对应的生成函数只需改为zezez−1\frac{ze^z}{e^z-1}ez1zez即可。


递归定义方式:
Bn=[m=0]−∑k=0m−1(mk)Bkm−k+1 B_n=[m=0]-\sum\limits_{k=0}^{m-1}\tbinom{m}{k}\frac{B_k}{m-k+1} Bn=[m=0]k=0m1(km)mk+1Bk
边界为B0=1B_0=1B0=1[m=0][m=0][m=0]表示当m=0m=0m=0时为111,否则为000

简单应用

  • 自然数幂的前缀和

∑i=1nik=1k+1∑i=1k+1Ck+1iBk+1−i(n+1)i \sum_{i=1}^ni^k=\frac{1}{k+1}\sum_{i=1}^{k+1}C_{k+1}^iB_{k+1-i}(n+1)^i i=1nik=k+11i=1k+1Ck+1iBk+1i(n+1)i

  • 特殊的公式
    ∑k=0nCn+1kBk=0 \sum_{k=0}^{n}C_{n+1}^kB_k=0 k=0nCn+1kBk=0

Bn=−1n+1(Cn+10B0+Cn+11+⋯+Cn+1n−1Bn−1) B_n=-\frac{1}{n+1}(C_{n+1}^0B_0+C_{n+1}^{1}+\cdots +C_{n+1}^{n-1}B_{n-1}) Bn=n+11(Cn+10B0+Cn+11++Cn+1n1Bn1)

我们将生成函数的公式继续变形得到:

=z∑i=1∞zii!=1∑i=0∞zi(i+1)! =\frac{z}{\sum_{i=1}^{\infty}\frac{z^i}{i!}} \\ =\frac{1}{\sum_{i=0}^{\infty}\frac{z^i}{(i+1)!}} =i=1i!ziz=i=0(i+1)!zi1
最后就变成了多项式∑i=0∞zi(i+1)!\sum_{i=0}^{\infty}\frac{z^i}{(i+1)!}i=0(i+1)!zi的逆元了,用多项式求逆(NTT)即可在O(nlogn)O(nlogn)O(nlogn)的时间内预处理前nnn项。


参考:

转载于:https://www.cnblogs.com/VictoryCzt/p/10053419.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值