伯努利数记录

伯努利数在数学中用于求解自然幂和,可以通过O(k^2)的递推公式或者多项式求逆元的O(nlogn)方法获取。递推公式为B0=1,且满足特定关系;求解时可以使用51nod上的序列求和问题作为实例,利用逆元概念进行高效计算。
摘要由CSDN通过智能技术生成

1.伯努利数能干啥

伯努利数求自然幂和
∑ i = 1 n i k = 1 k + 1 ∑ i = 1 k + 1 ( k + 1 i ) B k + 1 − i ( n + 1 ) i \sum_{i=1}^{n} i^k = \frac{1}{k+1}\sum_{i=1}^{k+1}\binom{k+1}{i}B_{k+1-i}(n+1)^i i=1nik=k+11i=1k+1(ik+1)Bk+1i(n+1)i

2.怎么得到啊

1. O ( k 2 ) O(k^2) O(k2) 递推

B 0 = 1 B_0 = 1 B0=1

∑ k = 0 n ( n + 1 k ) B k = 0 \sum_{k=0}^{n}\binom{n+1}{k}B_k = 0 k=0n(kn+1)Bk=0

B n = − 1 n + 1 ∑ i = 0 n − 1 ( n + 1 i ) B i B_n = -\frac{1}{n+1} \sum_{i=0}^{n-1} \binom{n+1}{i}B_i Bn=n+11i=0n1(in+1)Bi

题目: 51nod 序列求和V2

code:

#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdio>

using namespace std;
typedef long long ll;

const int maxn = 1e5+10;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值