互斥事件的概念和公式_高中文科数学选修12第一章第3节条件概率与独立事件

本文介绍了高中文科数学选修12中关于互斥事件和对立事件的基本概念。在随机试验中,互斥事件是指一次试验下不能同时发生的两个事件,其概率公式为P(A∪B)=P(A)+P(B);对立事件则是不能同时发生但必须有一个发生的事件,满足P(A)=1-P(B)和P(A∪B)=1。此外,还回顾了古典概型和几何概型的概率计算方法。
摘要由CSDN通过智能技术生成

学习本节课之前要复习必修3概率的有关概念:

1.概率与事件

概率的取值范围是[0,1],必然事件的概率为1,不可能事件的概率为0.

互斥事件:在一个随机试验中,一次试验下不能同时发生的两个事件A和B,称它们为互斥事件。

若事件AB为互斥事件,则P(AB)=P(A)+P(B).

对立事件在一个随机试验中,一次试验下不能同时发生且必须有一个发生的两个事件A和,称它们为对立事件。

AB为对立事件,则P(A)=1-P(B),P(AB)=1,P(AB)=0.

2.古典概型

具有以下两个特点的概率模型称为古典概率模型,简称古典概型:

(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件出现的可能性相等.

对于古典概型,任何事件的概率为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值