学习本节课之前要复习必修3概率的有关概念:
1.概率与事件
概率的取值范围是[0,1],必然事件的概率为1,不可能事件的概率为0.
互斥事件:在一个随机试验中,一次试验下不能同时发生的两个事件A和B,称它们为互斥事件。
若事件A与B为互斥事件,则P(A∪B)=P(A)+P(B).
对立事件:在一个随机试验中,一次试验下不能同时发生且必须有一个发生的两个事件A和,称它们为对立事件。
若A与B为对立事件,则P(A)=1-P(B),P(A∪B)=1,P(A∩B)=0.
2.古典概型
具有以下两个特点的概率模型称为古典概率模型,简称古典概型:
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等.
对于古典概型,任何事件的概率为
P(A)=A包含的基本事件数 / 总基本事件数.
3.几何概型
若每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.
几何概型的特点:
(1)试验中所有可能出现的结果(基本事件)有无限多个;
(2)每个基本事件出现的可能性相等.
几何概型的概率公式:
P(A)=构成事件A的区域长度(面积或体积) / 总区域的长度(面积或体积).
本节课的主要内容为:
本节课要会这些类型的例题: