题目描述
“狼爱上羊啊爱的疯狂,谁让他们真爱了一场;狼爱上羊啊并不荒唐,他们说有爱就有方向......” Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆。可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已。所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养。 通过仔细观察,Orez发现狼和羊都有属于自己领地,若狼和羊们不能呆在自己的领地,那它们就会变得非常暴躁,不利于他们的成长。 Orez想要添加篱笆的尽可能的短。当然这个篱笆首先得保证不能改变狼羊的所属领地,再就是篱笆必须修筑完整,也就是说必须修建在单位格子的边界上并且不能只修建一部分。
输入输出格式
输入格式:
文件的第一行包含两个整数n和m。接下来n行每行m个整数,1表示该格子属于狼的领地,2表示属于羊的领地,0表示该格子不是任何一只动物的领地。
输出格式:
文件中仅包含一个整数ans,代表篱笆的最短长度。
输入样例#1:
2 2 2 2 1 1
输出样例#1:
2
解析:
狼和羊被分开等于说任意狼和羊不连通,容易想到最小割。把狼和羊(1和2)分成两部分,源点向1连边,2向汇点连边,容量inf;1和2交界处连边,然后0向四周连边(因为0周围可任意切割),1向相邻的2连边,容量为1。然后Dinic或者ISAP。
以下是我的代码(依然比较宽。。):
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #define S (n * m + 1) 5 #define T (n * m + 2) 6 #define ID(x, y) ((x) * m + (y)) 7 #define INF 0x7f7f7f7f 8 using namespace std; 9 10 const int dx[] = {0, 0, 1, -1}; 11 const int dy[] = {-1, 1, 0, 0}; 12 13 struct Edge 14 { 15 int v, next, cap; 16 Edge(int a = 0, int b = 0, int c = 0) 17 :v(a), next(b), cap(c){}; 18 }edge[100020]; 19 int n, m, cnt; 20 int head[10010], cur[10010], dep[10010], map[10010]; 21 22 void AddEdge(int _u, int _v, int _c) 23 { 24 edge[cnt] = Edge(_v, head[_u], _c); 25 head[_u] = cnt++; 26 edge[cnt] = Edge(_u, head[_v], 0); 27 head[_v] = cnt++; 28 } 29 bool bfs() 30 { 31 int queue[10010], qHead = 0, qTail = 0; 32 queue[qTail++] = S; 33 memset(dep, 0, sizeof(dep)); 34 dep[S] = 1; 35 while(qTail > qHead) 36 { 37 int p = queue[qHead++]; 38 for(int i = head[p]; ~i; i = edge[i].next) 39 if(edge[i].cap && !dep[edge[i].v]) 40 { 41 dep[edge[i].v] = dep[p] + 1; 42 queue[qTail++] = edge[i].v; 43 } 44 } 45 return dep[T]; 46 } 47 bool dfs(int now) 48 { 49 if(now == T) return true; 50 for(int &i = cur[now]; ~i; i = edge[i].next) 51 if(edge[i].cap && dep[edge[i].v] == dep[now] + 1 && dfs(edge[i].v)) 52 { 53 edge[i].cap--, edge[i ^ 1].cap++; 54 return true; 55 } 56 return false; 57 } 58 int Dinic() 59 { 60 int res = 0; 61 while(bfs()) 62 { 63 memcpy(cur, head, sizeof(head)); 64 while(dfs(S)) 65 res++; 66 } 67 return res; 68 } 69 int main() 70 { 71 memset(head, -1, sizeof(head)); 72 scanf("%d%d", &n, &m); 73 for(int i = 0; i < n; i++) 74 for(int j = 0; j < m; j++) 75 scanf("%d", &map[ID(i, j)]); 76 for(int i = 0; i < n; i++) 77 for(int j = 0; j < m; j++) 78 switch(map[ID(i, j)]) 79 { 80 case 1: 81 AddEdge(S, ID(i, j), INF); 82 for(int k = 0; k < 4; k++) 83 if(i + dx[k] < n && i + dx[k] >= 0 84 && j + dy[k] < m && j + dy[k] >= 0 85 && map[ID(i + dx[k], j + dy[k])] != 1) 86 AddEdge(ID(i, j), ID(i + dx[k], j + dy[k]), 1); 87 break; 88 case 2: 89 AddEdge(ID(i, j), T, INF); 90 for(int k = 0; k < 4; k++) 91 if(i + dx[k] < n && i + dx[k] >= 0 92 && j + dy[k] < m && j + dy[k] >= 0 93 && map[ID(i + dx[k], j + dy[k])] == 0) 94 AddEdge(ID(i + dx[k], j + dy[k]), ID(i, j), 1); 95 break; 96 default: 97 for(int k = 0; k < 4; k++) 98 if(i + dx[k] < n && i + dx[k] >= 0 99 && j + dy[k] < m && j + dy[k] >= 0 100 && map[ID(i + dx[k], j + dy[k])] == 0) 101 AddEdge(ID(i, j), ID(i + dx[k], j + dy[k]), 1); 102 } 103 printf("%d\n", Dinic()); 104 105 return 0; 106 }//Rhein_E