bzoj1912 树形dp求直径(新写法),求直径的两端点

通过回溯法可以求出直径的两个端点,同时注意有负权边的树求直径不可以用两次dfs来求,而必须用dp做

/*
分情况讨论问题
一条边也不加的情况,显然每条边要扫描两次,
    该情况的答案是2(n-1)
只加一条边的情况,找到直径,将其变成一个环,在这个环上的所有边只要扫描一次,剩下的边就要扫描两次
    设直径为L,该情况下的答案是 2(n-1-L)+L+1=2n-L-1=2(n-1)-(L-1)
加两条边的情况,在加入第一条边出现环的情况下,再加入一条边形成的环会和原来的环有重合
重合的部分任然要扫描两次,所以新加入的边要使形成的环和原来的环非重合的边和重合的边的差最大
那么如何快速求新加入的边?只要将第一条边加入后形成的环的边权值变成-1,然后再求一次直径即可
    设第一次的直径L1,第二次的直径L2,那么该情况下的答案是2(n-1)-(L1-1)-(L2-1) 
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 100005
struct Edge{int to,nxt,w;}edge[maxn<<1];
int head[maxn],tot,n,k,ans;
void init(){
    memset(head,-1,sizeof head);
    tot=0;
}
void addedge(int u,int v){
    edge[tot].w=1;edge[tot].to=v;edge[tot].nxt=head[u];head[u]=tot++;
}

int pre1[maxn],pre2[maxn],dp[maxn],mx;//记录x的最长和次长子链的边的下标 
int dfs(int x,int fa)
{
    int mx1=0,mx2=0;
    for(int i=head[x];i!=-1;i=edge[i].nxt)
        if(edge[i].to!=fa)
        {
            int v=edge[i].w+dfs(edge[i].to,x);
            if(v>mx1)mx2=mx1,mx1=v,pre2[x]=pre1[x],pre1[x]=i;
            else if(v>mx2)mx2=v,pre2[x]=i;
        }
    if(mx1+mx2>ans)ans=mx1+mx2,mx=x;
    return mx1;
}

int main(){
    init();
    memset(pre1,-1,sizeof pre1);
    memset(pre2,-1,sizeof pre2);
    cin>>n>>k;
    int tot=2*n-2;
    for(int i=1;i<n;i++){
        int u,v;cin>>u>>v;
        addedge(u,v);addedge(v,u);
    }    
    dfs(1,0);
    tot=tot-ans+1;
    if(k==2)
    {
        ans=0;
        for(int i=pre1[mx];i!=-1;i=pre1[edge[i].to])edge[i].w=edge[i^1].w=-1;
        for(int i=pre2[mx];i!=-1;i=pre1[edge[i].to])edge[i].w=edge[i^1].w=-1;
        dfs(1,0);tot=tot-ans+1;
    }
    cout<<tot<<endl;
}

 

转载于:https://www.cnblogs.com/zsben991126/p/10507848.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个的棋盘,每个上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个 $(x,y)$ 的权值为 $a_x+a_y$,所有满足条件的路径中,所有的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有的权值出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个的父节是它的前驱或者后继,然后我们从根节开始,依次向下遍历,对于每个节,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有的权值和的最小值,然后再将这个值加上当前节的权值,就可以得到从根节到当前节的路径中,所有的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值