树的直径的求法

一、树的直径

给定一颗树,树的每条边都有一个权值, 树中任意两点都有一条唯一的简单路径,路径长度为连接两点的路径上的边权之和,路径长度最长的一条为树的直径,往往说的直径既可以指路径长度,也可以指具体路径(即经过哪些点)。直径不唯一。

一般使用两种方法求直径:两次dfs/bfs、树形dp,时间复杂度都为O(n)。

本文主要关注两次dfs

二、两次dfs

思路:由于树上任意两点都有唯一的路径,用p、q表示直径的两个端点。

从直径一端p出发进行dfs/bfs,dist[i]表示p到i的路径长度,那么dist最大的点就是q,此时dist[q]就是直径长度,所以已知p就可以求出q。

如何求p?从任意点出发,找到距离出发点最远的节点,该节点就是p。(第一次dfs)

代码:

#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
const int maxn = 1e5 + 5;
vector<int> e[maxn];
int n, dist[maxn], pre[maxn]; // pre:前驱(父)节点
void dfs(int u, int fa, int &p) {
    pre[u] = fa;
    if (dist[u] > dist[p])
        p = u;
    for (int v : e[u]) {
        if (v == fa)
            continue;
        dist[v] = dist[u] + 1;
        dfs(v, u, p);
    }
}
// 输出具体路径, pre[p] == 0
void print(int x) {
    if (x == 0)
        return;
    print(pre[x]);
    cout << x << ' ';
}
int main() {
    cin >> n;
    for (int i = 0; i < n - 1; ++i) {
        int u, v;
        cin >> u >> v;
        e[u].push_back(v);
        e[v].push_back(u);
    }
    int p, q;
    dist[1] = 0;
    dfs(1, 0, p = 1);
    dist[p] = 0;
    dfs(p, 0, q = p);
    print(q);
    cout << '\n' << dist[q] << '\n';
    return 0;
}

### 计算木枝干直径的方法 在计算木枝干的直径时,可以采用几何建模和物理模拟相结合的方式。以下是几种可能的技术路径: #### 几何建模方法 如果目标是在虚拟环境中生成一棵,则可以通过定义参数化模型来控制枝干的直径。Unity3D 提供了一个内置的编辑器工具[^2],允许用户从主干开始构建整棵,并调整各部分的比例关系。在这种情况下,枝干的直径可以直接作为输入参数设置。 对于更复杂的场景,还可以引入基于分形理论或者L-System的语言描述法来自动生成自然形态的植物结构。这些方法通常会考虑生长规律以及环境因素的影响,在此过程中也会涉及对不同层次分支粗细比例的设计。 #### 物理仿真方法 当需要更加真实地表现风吹草动下的动态效果时,就需要运用物理学原理来进行数值分析了。文献提到过一种假设条件:“我们简化地假定木的动力学特性”,其中包括一致性的密度分布、忽略掉局部间相互干扰(如无碰撞检测)[^3]等设定前提下推导出来的公式可用于估算实际物体尺寸大小范围内的合理近似值。 具体而言,为了得到某个特定位置处横截面积A(x),可以根据质量守恒定律得出相应长度l上的变化趋势dA/dx=-k*A^n其中n>=1取决于材料属性等因素;而最终得半径r即满足π*r²=A即可完成整个流程操作步骤说明完毕之后再给出一段总结性质的话收尾比较好一点吧比如下面这样写就不错哦~ 另外值得注意的是上述两种途径各有优劣之处需视具体情况灵活选用合适方案解决问题才是王道呢! ```python import math def calculate_diameter(mass, length, constant_k=0.5): """ Calculate the diameter of a tree branch based on mass and length. Parameters: mass (float): Mass per unit length of the branch. length (float): Length of the segment along which to compute the radius change. constant_k (float): Empirical coefficient related to material properties. Returns: float: Diameter at end point after specified distance traveled through growth process. """ initial_area = 4 * math.pi ** 2 / (constant_k**(1/2)) # Simplified assumption about starting condition final_area = ((initial_area)**(-constant_k*length)+mass)*((initial_area)**constant_k)-mass return math.sqrt(final_area/math.pi) example_result = calculate_diameter(1e-3, 5) print(f"The calculated diameter is approximately {round(example_result, 6)} meters.") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值