【bzoj1912】 APIO2010patrol巡逻 树的直径

树的直径相关吧。

首先k=1时,非常简单只需要在直径的两端连一条边。

当k=2时,先在直径的两端连一条边,之后把直径上每条边边权变为-1,再求一遍直径,为什么呢?

边权变成-1,等价于多走两遍。

注意第二次不能用两次bfs,因为有负数边。


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define maxn 100010

using namespace std;

int f1[maxn],f2[maxn],s1[maxn],s2[maxn],pre[maxn];
int next[2*maxn],to[2*maxn],head[maxn],len[2*maxn],fr[2*maxn];
int n,m,num,k,root;

void addedge(int x,int y)
{
	num++;to[num]=y;fr[num]=x;len[num]=1;next[num]=head[x];head[x]=num;
}

void dfs(int x,int fa)
{
	s1[x]=s2[x]=x;
	for (int p=head[x];p;p=next[p])
	  if (to[p]!=fa)
	  {
	  	pre[to[p]]=p;
	  	dfs(to[p],x);
	  	if (f1[to[p]]+len[p]>f1[x])
	  	{
	  		f2[x]=f1[x];
	  		s2[x]=s1[x];
	  		f1[x]=f1[to[p]]+len[p];
	  		s1[x]=s1[to[p]];
	  	}
	  	else 
	  	if (f1[to[p]]+len[p]>f2[x])
	  	{
	  		f2[x]=f1[to[p]]+len[p];
	  		s2[x]=s1[to[p]];
	  	}
	  }
	if (f1[x]+f2[x]>f1[root]+f2[root]) root=x;
}

int main()
{
	scanf("%d%d",&n,&k);
	num=1;
	for (int i=1;i<n;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		addedge(x,y);addedge(y,x);
	}
	dfs(1,0);
	int ans=2*(n-1)-f1[root]-f2[root]+1;
	if (k==1) printf("%d\n",ans);
	else
	{
		int x=s1[root];
		while (x!=root) len[pre[x]]=-1,len[pre[x]^1]=-1,x=fr[pre[x]];
		x=s2[root];
		while (x!=root) len[pre[x]]=-1,len[pre[x]^1]=-1,x=fr[pre[x]];
		memset(f1,0,sizeof(f1));
		memset(f2,0,sizeof(f2));
		dfs(1,0);
		ans=ans-f1[root]-f2[root]+1;
		printf("%d\n",ans);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值